水声定位是实现水下定位的关键技术,也是近年来的研究热点。以声速修正和基阵布放为切入点,针对声速不确定、基阵布放设计不合理等问题综述提高水声定位精度的研究进展。针对基阵布放问题,重点对比基阵尺寸及基阵阵型阵元2种改进方案的研究现状。研究表明,为提高水声定位精度,进一步的研究应在以下3个方面展开:在声速修正方法研究中,遗传算法和粒子群优化算法相结合,可以在不提高计算量的情况下优化稀疏有效声速表,使定位精度得到进一步提高;基于组合基阵定位系统辅助的声速修正算法能够使定位误差更小;综合考虑阵元数目与所需定位精度的折中方案,能够本着降低布放成本的原则,通过优化不同阵元间距来提高超短基线的定位精度。
Underwater acoustic positioning is the key technology to achieve accurate underwater positioning, and it is also a research hotspot in recent years.With the sound velocity correction and the base array deployment as the entry point, the research progress of improving the underwater acoustic positioning accuracy is reviewed for the problems of uncertain sound velocity and unreasonable design of the array.Aiming at the problem of array placement, the research status of two improved schemes of array size and array array element is compared. Research shows that in order to improve the accuracy of underwater acoustic positioning, further research should be carried out in the following three aspects: In the study of sound velocity correction method, the combination of genetic algorithm and particle swarm optimization algorithm can optimize sparse effective without increasing the calculation amount. The sound velocity meter further improves the positioning accuracy; the sound velocity correction algorithm based on the combined array positioning system can make the positioning error smaller; the compromise scheme that considers the number of array elements and the required positioning accuracy can reduce the deployment cost. The principle of improving the positioning accuracy of ultra-short baselines by optimizing the spacing of different elements.
2021,43(1): 11-16 收稿日期:2019-11-11
DOI:10.3404/j.issn.1672-7649.2021.01.002
分类号:O427
基金项目:山东省重点研发计划(公益类专项)资助项目(2018GHY115022);国家自然科学基金资助项目(61471224)
作者简介:吕文红(1968-),女,博士,教授,研究方向为智能交通系统和先进传感器技术
参考文献:
[1] TAN H-P, DIAMANT R, SEAH W K. G., WALDMEYER Marc. A survey of techniques and challenges in underwater localization[J]. Ocean Engineering, 2011, 38(14-15): 1663-1676
[2] 严浙平, 王璐. UUV水下定位方法的研究现状与进展[J]. 哈尔滨工程大学学报, 2017, 38(7): 989-1000
[3] IV JAMES H. K, CLAUS B C., KINSEY J C. A navigation solution using a MEMS IMU, model-based dead-reckoning, and one-way-travel-time acoustic range measurements for autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2019, 44(3): 664-682
[4] 张同伟, 秦升杰, 唐嘉陵, 等. 深海长基线定位系统现状及展望[J]. 测绘通报, 2018(10): 75-78+106
[5] SUN Dajun, GU Jia, HAN Yunfeng, et al. Inverted ultra-short baseline signal design for multi-AUV navigation[J]. Applied Acoustics, 2019(150): 5-13
[6] RIGBY P, PIZARRO O, WILLIAMS S B.. towards Geo-referenced AUV navigation through fusion of USBL and DVL measurements[C]//OCEANS 2006. Boston: IEEE, 2006. 1-6.
[7] 孙大军, 郑翠娥, 张居成, 等. 水声定位导航技术的发展与展望[J]. 中国科学院院刊, 2019, 34(3): 331-338
[8] ABE K, ARAKAWA M, KANAI H. Estimation method for sound velocity distribution for high-resolution ultrasonic tomographic imaging[J]. Journal of Medical Ultrasonics, 2018(46): 1-7
[9] PETRES C, PAILHAS Y, PATRON P, et al. Path planning for autonomous underwater vehicles[J]. IEEE Transactions on Robotics, 2007, 23(2): 331-341
[10] BEAUJEAN P-P J., BON A An edgar motioncompensated acoustic positioning in very shallow waters using spread-spectrum signaling and a tetrahedral ultra-short baseline array[J]. Marine Technology Society Journal, 2010, 44(5): 50-66
[11] VAAS A. E. Refraction of the direct monotonic sound ray[J]. Technical Memorandum 322, 1964
[12] ANDERSON L. A. Software for surveying arrays of hydrophones and deep ocean transponders, volume i: user's guide[J]. Technical Publication TP000041A, 1987
[13] 吴碧, 陈长安, 林龙. 声速经验公式的适用范围分析[J]. 声学技术, 2014, 33(6): 504-507
[14] MEINEN C S., WATTS, D Randolph further evidence that the sound speed algorithm of del grosso is more accurate than that of chen and millero[J]. Journal of the Acoustical Society of America, 1997, l02(4): 2058-2062
[15] 葛亮, 吴怀河. 一种水声定位系统的声速修正方法[J]. 山东农业大学学报(自然科学版), 2006(4): 647-650
[16] 梁民赞, 余毅, 王黎明, 等. 一种声线修正的查表方法[J]. 声学技术, 2009, 28(4): 556-559
LIANG Minzan, YU Yi, WANG Liming, et al. A method of checking tables for sound line correction[J]. Acoustic Technology, 2009, 28(4): 556-559
[17] VINCENT H T. Models, Algorithms and measurement for underwater acoustic positioning[D]. Rhode island: University of Rhode Island, 2001. 1-5.
[18] 孙万卿. 浅海水声定位技术及应用研究[D]. 青岛: 中国海洋大学, 2007.
[19] YANG Fanlin, LU Xiushan, LI Jiabiao, HAN Litao, ZHENG Zuoya. Precise Positioning of Underwater Static Objects witho t Sound Speed Profile[J]. Marin e Geodesy, 2011, 34(2): 138151
[20] 林旺生. 水声信道仿真与声线修正技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[21] 梁国龙, 林旺生, 王燕. 水声信道有效声速估计方法及空间特征分析[J]. 哈尔滨工程大学学报, 2010, 31(12): 1587-1592
LIANG Guolong, LIN Wangsheng, WANG Yan. Evaluation method and spatial characteristics of effective sound velocity for underwater acoustic channel[J]. Journal of Harbin Engineering University, 2010, 31(12): 1587-1592
[22] 梁国龙, 林旺生, 王燕. 浅海信道有效声速估计及其在水声定位中的应用[J]. 声学技术, 2012, 31(1): 42-47
[23] WANG Jinjin, LIN Tao, FU Jin. Analysis of effective sound velocity spatial characteristic of typical munk deep sea channel[C]//2018 IEEE 8th International Conference on Underwater System Technology: Theory and Application, Wuhan, China: IEEE, 2018. 1-6.
[24] SUN Dajun, LI Haipeng, ZHENG Cuie, et al. Sound velocity correction based on effective sound velocity for underwater acoustic positioning systems[J]. Applied Acoustics, 2019(151): 55-62
[25] 黄健, 严胜刚. 未知声速下长基线系统定位修正算法[J]. 上海交通大学学报, 2019, 53(3): 366-372
HUANG Jian, YAN Shenggang. A long baseline system positioning correction algorithm for unknown sound velocity[J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 366-372
[26] 吴德明. 一种用于声线修正的迭代法[J]. 声学学报, 1992(02): 104-110
[27] 李迎春, 吴德明. 短基线平面阵形双曲面定位系统的声线修正[J]. 声学学报, 1992(5): 340-344
[28] 王燕, 梁国龙. 一种适用于长基线水声定位系统的声线修正方法[J]. 哈尔滨工程大学学报, 2002(5): 32-34
[29] 张居成, 郑翠娥, 孙大军. 用于声线跟踪定位的自适应分层方法[J]. 哈尔滨工程大学学报, 2013, 34(12): 1497-1501
[30] 李圣雪, 王振杰, 聂志喜, 等. 一种适用于深海长基线定位的自适应分层声线跟踪法[J]. 海洋通报, 2015, 34(5): 491-498
[31] LI Jian, GU Qi, CHEN Ying, et al. A combined ray tracing method for improving the precision of the USBL positioning system in smart ocean[J]. Sensors, 2018, 18(10): 1-19
[32] 张道平. 超短基线定位系统的误差分析[J]. 海洋学报(中文版), 1989(4): 510-517
[33] 喻敏, 惠俊英, 冯海泓, 等. 超短基线系统定位精度改进方法[J]. 海洋工程, 2006(1): 86-91
YU Min, HUI Junying, FENG Haizhen, et al. Improvement method of positioning accuracy of ultra-short baseline system[J]. Ocean Engineering, 2006(1): 86-91
[34] 李想, 张殿伦, 孙大军, 等. 高精度超短基线定位系统的实现[J]. 计算机工程与应用, 2007(24): 176-178+199
[35] 肖亮, 韩焱. 基于多阵元基阵的超短基线声定位方法[J]. 弹箭与制导学报, 2006(4): 263-265
[36] 郑翠娥, 李琪, 孙大军, 等. 一种超短基线定位系统阵型的改进方法[J]. 中国海洋大学学报(自然科学版), 2009, 39(3): 505-508
[37] 马根卯, 董铭锋, 钟琴琴. 超短基线阵基元位置精确校准试验研究[J]. 声学与电子工程, 2016(2): 20-24
[38] 陈华伟, 赵俊渭, 郭业才. 五元十字阵被动声定位算法及其性能研究[J]. 探测与控制学报, 2003(4): 11-16
[39] 孙书学, 顾晓辉, 孙晓霞. 用正四棱锥形阵对声目标定位研究[J]. 应用声学, 2006(2): 102-108
[40] 林晓东, 吴松林, 张川. 六元探测基阵被动声定位算法及其性能研究[J]. 声学技术, 2008(2): 192-196
LIN Xiaodong, WU Songlin, ZHANG Chuan. Study on passive acoustic localization algorithm of six-dimensional detecting array and its performance[J]. Acoustic Technology, 2008(2): 192-196
[41] ARKHIPOV Mikhail. Designing a USBL system based on a square pyramid array with a complete set of three-elem ent arrays[J]. Harnessing the Power of the Ocean, 2012: 1-9
[42] HAN Yunfeng, ZHENG Cuie, SUN Dajun. A high precision calibration method for long baseline acoustic positioning systems[J]. Chinese Journal of Acoustics, 2017, 36(4): 489-500
[43] 南德, 李朝晖. 移动平台超短基线阵实现水下目标高精度定位[J]. 声学学报, 2019, 44(4): 534-544
[44] 张涛, 胡贺庆. 一种改进的水下三阵元辅助惯导系统的定位算法[J]. 中国惯性技术学报, 2017, 25(2): 192-196+202