船舶在极端波浪条件下会产生剧烈的砰击,瞬时产生的巨大作用力会造成船体结构的损坏,因此准确预估入水砰击过程非常重要。本文通过数值和实验,分析楔形体入水过程中运动、受力以及自由表面的变化情况,验证光滑粒子流体动力学(SPH)方法在楔形体入水问题上的适用性和准确性,并使用此方法分析楔形体入水时楔形体斜升角和入水速度的影响。结果表明,光滑粒子流体动力学方法在解决入水问题上有很好的准确性,在楔形体受力和自由表面变形上与实验结果有很好的吻合度。通过计算发现,最大砰击力与楔形体斜升角的三次方成正比,与入水速度的二次方成正比,增大楔形体的斜升角和降低入水速度,都可有效减少入水砰击力。
The ship is subject to severe slamming under extreme wave conditions. The large instantaneous force would cause great damage to the hull structure. It is thus of great significance to estimate such water entry process accurately. The current work conducted numerical and experimental study to investigate the movement and force of the wedge body, and the deformation of free surface during the water entry process. The smoothed particle hydrodynamics (SPH) method was used to solve the current water entry problem after verifying the applicability and accuracy of this method. Then the effects of the deadrise angle and the speed of the wedge were studied. The results show that the SPH method has good accuracy in studying the water entry problem and there is a good agreement of the numerical and experimental results in the force on the wedge and the free surface deformation. It is found that maximum slamming force is to the cube of the wedge's deadrise angle and proportional to the square of the water entry velocity. The increase in the wedge's deadrise angle and decrease in the speed of water entry can effectively reduce the slamming force caused by the water entry process.
2021,43(1): 53-60 收稿日期:2019-12-23
DOI:10.3404/j.issn.1672-7649.2021.01.010
分类号:TJ630
作者简介:陈光茂(1993-),男,硕士研究生,研究方向为流体力学
参考文献:
[1] VON KARMAN T. The impact on seaplane floats during landing[J]. National Advisory Committee for Aeronautics Technical Notes, 1929
[2] WAGNER H. Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten[J]. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215
[3] DOBROVOL’SKAYA Z N. On some problems of similarity flow of fluid with a free surface[J]. Journal of Fluid Mechanics, 1969, 36(04): 805
[4] GREENHOW M, LIN W-M. Nonlinear free surface effects: experiments and theory[R]. Massachusetts Inst Of Tech Cambridge Dept Of Ocean Engineering, 1983.
[5] ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246(1): 593
[6] KLEEFSMAN K, FEKKEN G, VELDMAN A, et al. A volume-of-fluid based simulation method for wave impact problems[J]. Journal of Computational Physics, Elsevier, 2005, 206(1): 363-393
[7] 王加夏, 陈月, 彭丹丹, 等. 砰击载荷下三维变形结构动态响应的数值模拟[J]. 舰船科学技术, 2019, 41(9): 8-14
[8] ZHANG Y, ZOU Q, GREAVES D, et al. A level set immersed boundary method for water entry and exit[J]. Communications in Computational Physics, Global Science Press, 2010, 8(2): 265-288
[9] KOSHIZUKA S, NOBE A, OKA Y. Numerical analysis of breaking waves using the moving particle semi-implicit method[J]. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769
[10] 陈翔, 饶成平, 万德成. MPS方法数值模拟楔形体入水问题[J]. 计算力学学报, 2017, 34(3): 356-362
[11] OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803-822
[12] 龚凯, 刘桦, 王本龙. SPH固壁边界处理方法的改进[J]. 力学季刊, 2008, 29(4): 507-514
[13] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82(3): 1013
[14] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389
[15] ALTOMARE C, DOMÍNGUEZ J M, CRESPO A J C, et al. Long-crested wave generation and absorption for SPH-based DualSPHysics model[J]. Coastal Engineering, 2017, 127(June): 37-54
[16] ZHANG A, SUN P, MING F. An SPH modeling of bubble rising and coalescing in three dimensions[J]. Computer Methods in Applied Mechanics and Engineering, Elsevier B. V., 2015, 294(145): 189-209
[17] ANTOCI C, GALLATI M, SIBILLA S. Numerical simulation of fluid-structure interaction by SPH[J]. Computers and Structures, 2007, 85(11-14): 879-890
[18] MONAGHAN J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543-574
[19] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, Academic Press, 1994, 110(2): 399-406
[20] WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1): 389-396
[21] CRESPO A J C, GOMEZ-GESTEIRA M, DALRYMPLE R A. Boundary conditions generated by dynamic particles in SPH methods[J]. Computers, Materials and Continua, 2007, 5(3): 173-184
[22] VERLET L. Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Physical review, APS, 1967, 159(1): 98
[23] MOLTENI D, COLAGROSSI A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH[J]. Computer Physics Communications, Elsevier, 2009, 180(6): 861-872