针对一艘目标三体船,构建MMG运动数学模型结构,利用无迹卡尔曼滤波器结合自航试验数据对模型中的参数进行辨识。为减轻动力相消带来的影响,结合三体船特点对模型结构进行化简,并设计不同的控制方式进行分步辨识。通过模型预报数据与自航试验观测值的对比,以及部分参数的试验测量值与辨识值的比较,验证了本文辨识方法的有效性和优越性。
Established mathematical model structure for a trimaran. Use Unscented Kalman filter and self-propulsion test to identify parameters in the model. To reduce cancellation effect, simplify the model structure according to the trimaran′s characteristic and design different control methods to identify parameters step by step. By comparing the model prediction results with observed data and comparing test measurement with identified value on part parameters, verified the effectiveness and advantage of the identification method.
2021,43(1): 89-94 收稿日期:2019-12-10
DOI:10.3404/j.issn.1672-7649.2021.01.016
分类号:U661.3
作者简介:秦操(1994-),男,硕士研究生,主要从事船舶自主避碰的研究
参考文献:
[1] 杨盐生, 贾欣乐. 船舶运动数学模型: 机理建模与辩识建模[M]. 大连: 大连海事大学出版社, 1999: 57−58.
[2] 小川阳弘. MMG报告-I操纵运动の数学モデルにつぃて[J]. 日本造船学会志, 1977(575): 175-184
OGAWA Youko. MMG report- I A mathematical model of the ship maneuverability[J]. Journal of Japan shipbuilding Society, 1977(575): 175-184
[3] ABKOWITZ M A. Lectures on ship hydrodynamics: steering and maneuvrability[M]. Hydro-og Aerodynamisk Laboratorium, Hydrodynamics Department, 1964.
[4] Abkowitz M A. Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification[R]. 1980.
[5] 侯先瑞. 基于支持向量回归机的波浪中船舶运动辨识建模研究[D]. 上海: 上海交通大学, 2017.
HOU Xian-rui. Identification modeling of ship motions in waves based on support vector regression[D]. Shanghai JiaoTong University, 2017.
[6] 张丽娜. 萤火虫算法研究及其在船舶运动参数辨识中的应用[D]. 哈尔滨: 哈尔滨工程大学, 2017.
ZHANG Li-na. Research on firefly algorithm and its application in parameter identification of ship motions[D]. Harbin Engineering University, 2017.
[7] 田延飞, 胡山川, 黄立文, 等. 基于人工蜂群算法的船舶运动模型参数离线辨识[J]. 信息技术, 2017(11): 49-52
TIAN Yan-fei, HU Shan-chuan, HUANG Li-wen, et al. Off-line parameter identification of mathematical ship motion model based on artificial bee colony algorithm[J]. Information Technology, 2017(11): 49-52
[8] 万冬冬. 基于多目标群智能算法的船舶横向运动参数辨识方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
WAN Dong-dong. Ship lateral motion parameter identification method based on multi-objective swarm intelligence[D]. Harbin Engineering University, 2018.
[9] HWANG W Y. Cancellation effect and parameter identifiability of ship steering dynamics[J]. International Shipbuilding Progress, 1982, 29(332): 90-102
[10] WAN E A, VAN Der Merwe R. The unscented Kalman filter for nonlinear estimation[C]//Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373). Ieee, 2000: 153−158.
[11] JULIER S J. The scaled unscented transformation[C]//Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301). IEEE, 2002, 6: 4555−4559.
[12] 周昭明, 盛子寅, 冯悟时. 多用途货船的操纵性预报计算[J]. 船舶工程, 1983(6): 21-29+36+4
ZHOU Zhao-ming, SHENG Zi-yin, FENG Wu-shi. Prediction and calculation of maneuverability of multi-purpose cargo ship[J]. Ship Engineering, 1983(6): 21-29+36+4