橡胶减震器在使用过程中呈现时变蠕变特性,影响其工作性能及使用寿命。基于超弹力学及损伤力学理论,建立橡胶材料考虑损伤效应的唯象蠕变本构模型;根据试验结果,识别模型关键参数,开展材料本构模型与有限元模拟的相容性研究,构建橡胶减震器非线性时变蠕变数值模拟方法。采用Von Mises屈服准则来评估橡胶材料的蠕变残余变形,发展一种考虑永久变形的修正蠕变本构模型。研究成果可为橡胶减震器的时变性能分析及寿命预测提供理论基础。
The rubber shock absorber presents time-depending creep characteristics in the use process, which affects its working performance and service life. Based on the theory of hyperelasticity and damage mechanics, the phenomenological creep constitutive model of rubber material considering damage effect is established; based on the test results, the key parameters of the model are identified; the compatibility between material constitutive model and finite element simulation is studied, and the nonlinear time-depending creep numerical simulation method of rubber shock absorber is constructed. Von Mises yield criterion is used to evaluate the residual creep deformation of rubber materials. A modified creep constitutive model considering permanent deformation is developed. The research results can provide theoretical basis for time-depending performance analysis and life prediction of rubber shock absorbers.
2021,43(1): 95-101 收稿日期:2020-04-26
DOI:10.3404/j.issn.1672-7649.2021.01.017
分类号:TG15
作者简介:马永(1978-),男,高级工程师。主要研究方向为水下发射技术
参考文献:
[1] 束立红, 何琳. 聚氨酯隔振器蠕变特性力学模型试验研究[J]. 噪声与振动控制, 2012, 32(2): 147-150
SHU L H, HE L. Mechanical model for creep performance testing and analysis of polyurethane isolator[J]. Noise and Vibration Control, 2012, 32(2): 147-150. (in Chinese)
[2] 刘迪辉, 范迪, 欧阳雁峰, 等. 温度对橡胶隔振器力学性能的影响[J]. 噪声与振动控制, 2014, 34(3): 203-206
LIU D H, FAN D, OUYANG Y F, et al. Temperature effect on mechanical properties of rubber isolators[J]. Noise and Vibration Control, 2014, 34(3): 203-206
[3] 杭超, 范勇军, 苏尔敦, 等. 不同环境温度下橡胶隔振器振动性能研究[J]. 科学技术与工程, 2017, 17(2): 135-139
HANG C, FAN Y J, SU E D, et al. Research on dynamic character of rubber vibration isolator within different temperature range[J]. Science Technology and Engineering, 2017, 17(2): 135-139
[4] A. HANYGA, M. SEREDYFISKAB. Multiple-integral viscoelastic constitutive equations[J]. International Journal of Non-Linear Mechanics, 2007, 42(5): 722-732
[5] 高庆, 林松, 杨显杰. 丁基橡胶粘弹性材料的非线性蠕变本构描述[J]. 应用力学学报, 2007, 24(3): 386-390
GAO Q, LIN S, YANG X J. Constitutive description for nonlinear creep behavior of viscoelastic material buty1[J]. Chinese Journal of Applied Mechanics, 2007, 24(3): 386-390
[6] 康永刚, 张秀娥. 修正的高分子材料蠕变模型[J]. 材料科学与工程学报, 2013, 31(6): 924-928
KANG Y G, ZHANG X E. Modified creep models for polymer materials[J]. Journal of Materials Science & Engineering, 2013, 31(6): 924-928. (in Chinese)
[7] W. N. FINDLEY, J. S. LAI, K. ONARAN. Creep and relaxation of nonlinear viscoelastic materials[M]. North Holland Publishing Company, 1976.
[8] CHRISTENSEN. R. M. A comprehensive theory of yielding and failure for isotropic materials[J]. Journal of Engineering Materials and Technology, 2007, 129(2): 173-181
[9] LUO Robert Keqi, ZHOU Xiaolin, Jinfeng. Numerical prediction and experiment on rubber creep and stress relaxation using time-dependent hyperelastic approach[J]. Polymer Testing, 2016, 52: 246-253
[10] LUO R. K simulation and experiment for rubber springs[J]. Proc IMechE Part L: J Materials: Design and Applications, 2016, 230: 681-688
[11] LUO Robert Keqi. Creep modelling and unloading evaluation of the rubber suspensions of rail vehicles[J]. Proc IMechE Part F: J Rail and Rapid Transit, 2016, 230(4): 1071-1087
[12] LUO Robert Keqi, WU Xiaoping, PENG Limin. Creep loading response and complete loading-unloading investigation of industrial anti-vibration systems[J]. Polymer Testing, 2015, 46: 134-143
[13] 李厚民, 束立红, 戴杰, 等. 利用参数反演预测聚氨酯隔振器的蠕变曲线[J]. 湖北工业大学学报, 2014, 29(1): 72-75
LI H M, SHU L H, DAI J, ZHANG Y. Predicting creep curve of polyurethane vibration isolator by inversion analysis method[J]. Journal of Hubei University of technology, 2014, 29(1): 72-75
[14] 胡晓玲, 刘秀, 李明. 等 炭黑填充橡胶超弹性本构模型的选取策略[J]. 工程力学, 2014, 31(5): 34-42
HU Xiao-ling, LIU Xiu, LI Ming, et al. Selection strategies of hyperplastic constitutive models for carbon black filled rubber[J]. Engineering Mechanics, 2014, 31(5): 34-42