舱室大气环境是制约潜艇自持力的重要因素之一,大气监测的目的是保障人员生命安全,指导通风、净化系统运行,以及在大气组分浓度存在异常时及时警示。光谱分析技术是当前环境组分监测领域常用的灵敏、快速、准确的分析方法之一。针对现阶段潜艇大气监测需求,本文重点介绍傅里叶变换红外光谱技术、可调谐半导体激光吸收光谱技术、差分吸收光谱技术和光声光谱技术4种基于光学原理的空气组分监测技术的基本原理和应用现状,并对其应用于潜艇的适用性进行分析。
The atmospheric environment in the cabin is one of the important factors which restricts the self-sustaining force of the submarine. The purpose of atmospheric monitoring are guaranteeing the safety of personnel, guiding the operation of ventilation & purification system, and timely warning when the concentration of atmospheric components is abnormal. Spectral analysis is one of the sensitive, fast and accurate analysis methods which is commonly used in the field of environmental component monitoring. In order to achieve the requirements of submarine atmospheric monitoring in this period, this paper mainly introduces the basic principles and applications of four kinds of atmospheric monitoring technology based on optical principle of Fourier transform infrared spectroscopy(FTIR), tunable diode laser absorption spectroscopy(TDLAS), differential optical absorption spectroscopy(DOAS) and photoacoustic spectroscopy(PAS). In addition, the applicability for submarine is analyzed.
2021,43(1): 180-184 收稿日期:2020-07-21
DOI:10.3404/j.issn.1672-7649.2021.01.034
分类号:U664.86
作者简介:袁正洋(1992-),男,硕士研究生,研究方向为舰船大气环境控制
参考文献:
[1] 余涛, 周家勇, 徐德辉, 等. 国外核潜艇舱室空气组分特性研究综述[J]. 舰船科学技术, 2016, 38(1): 1-7
[2] 余涛, 李灿, 周家勇, 等. 美国海军核潜艇舱室大气监测主分析仪器发展述评[J]. 船舶工程, 2020(S1)
[3] STUFFLER T, MOSEBACH H, KAMPF D, et al. The flight experiment ANITA-a high performance air analyser for manned space cabins[J]. Acta Astronautica, 2004, 55(3-9): 573-579
[4] TIMOFEYEV Y, VIROLAINEN Y, MAKAROVA M, et al. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia)[J]. Journal of Molecular Spectroscopy, 2016: 323, 2−14.
[5] STUFFLER T, HOFMANN P, KLEIN V, et al. Progress in the development of the advanced ISS air monitor ANITA2-BB results and alternative ways for an implementation of the program[C]. The 45th International Conference on Environmental Systems, Washington, 12-16, July 2015.
[6] 冯明春, 高闽光, 徐亮, 等. 反射式FTIR监测温室气体浓度及其变化规律[J]. 激光与红外, 2011, 41(11): 1201-1204
[7] ANDREAS M, HUAN H, KIRK H. M. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions[J]. Optics Letters, 2017, 42(7): 1424-1427
[8] WERLE P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta, 1998, A54: 197-236
[9] BARBU T L, VINOGRADOV I, Durry G, et al. Tdlas, a diode laser sensor for the in situ monitoring of H2O and CO2 isotopes[J]. Advances in Space Research, 2006, 38: 718-725
[10] 何莹, 张玉钧, 王立明, 等. 氨气激光在线检测中浓度精度反演的研究[J]. 光学技术, 2018, 38(4): 421-426
[11] JEFFREY S P, WILLIAM R W, MIGUEL E C, et al. Optical multi-gas monitor technology demonstration on the international space station[C]. The 44th International Conference on Environmental Systems, Arizona, 13−17, July 2014.
[12] PAUL D M, JOSHUA A M, MATTHEW J S, et al. US navy submarine sea trial of NASA developed multi-gas monitor[C]. The 47th International Conference on Environmental Systems, South Carolina, 16−20 July 2017.
[13] MUDGETT P, MANNEY J, SMITH M, et al. Preparation of the multi-gas monitor for US navy submarine sea trial[C]. The 47th International Conference on Environmental Systems, Charleston, South Carolina, July 2017.
[14] MUDGETT P, MANNEY J, SMITH M, et al. US navy submarine sea trial of a NASA developed multi-gas monitor[C]. The 48th International Conference on Environmental Systems, Albuquerque, New Mexico, 8−12, July 2018.
[15] KAMBE Y, YOSHII Y, TAKAHASHIC K, et al. Monitoring of atmospheric nitrogen dioxide by long-path pulsed differential optical absorption spectroscopy using two different light paths[J]. J. Environ. Monit., 2012, 14: 944-950
[16] POGÁNY A, WAGNER S, WERHAHN O, et al. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor[J]. Applied Spectroscopy, 2015, 69(2): 257-268
[17] DAVID Garcia-Nieto, NURIA B, Alfonso Saiz-Lopez. Measurements of atmospheric HONO vertical distribution and temporal evolution in Madrid(Spain) using the MAX-DOAS technique[J]. Science of the Total Environment, 2018, 643: 957-966
[18] 姚建铨, 李润宸, 赵帆, 等. 基于DOAS的消防应急救援多气体快速遥感仪[J]. 光电子·激光, 2018, 29(3): 314-317
[19] SPAGNOLO V, KOSTEREV A A, DONG L, et al. Applied Physics B, 2010, 100(1): 125.
[20] YI H, MAAMARY R, GAO X, et al. Applied Physics Letters, 2015 106(10): 273.
[21] 王建伟. 近红外激光光声光谱多组分气体检测技术及其医学应用[D]. 大连: 大连理工大学, 2012.
[22] HIRSCHMANN C B. Trace gas detection of benzene, toluene, p-, m- and o-xylene with a compact measurement system using cantilever enhanced photoacoustic spectroscopy and optical parametric oscillator[J]. Vibrational Spectroscopy, 2013, 68: 170-176
[23] 蒙瑰. 基于光声光谱的多组分环境气体分析仪[J]. 军民两用技术与产品, 2019, 430: 53
[24] PEEL A E, ARSAC F, JOUANDON E. Control of the submarine atmosphere in the French Navy[C]. The 40th International Conference on Environmental Systems, AIAA 2010−6275.
[25] MAZUREK W. Key developments in submarine air monitoring and air purification during the past 20 years[C]//Submarine Air Monitoring and Air Purification Conference, Den Helder, The Netherlands, 2015, 5−8, Oct.
[26] 许明镐, 等译. 空气净化技术手册. 北京: 化学工业出版社, 2001.
[27] FRANS J M H, SIMONA M C. Photoacoustic spectroscopy in trace gas monitoring[J]. Environment: Trace Gas Monitoring, 2019: 1-29
[28] aUlrich Platt. Differential optical absorption spectroscopy, air monitoring by[J]. Environment: Trace Gas Monitoring, 2006: 1-23