复合材料加筋板复杂的破坏过程与失效形式增加了应用难度。以面外均布载荷与面内压缩联合作用下的夹芯复合材料帽型加筋板为研究对象,在通过试验结果验证非线性有限元方法准确性的基础上,基于复合材料的hashin准则与胶层界面的最大应力准则展开渐进破坏分析,讨论了极限载荷、破坏模式及失效机理。采用有限元子模型技术对中段破坏区域建模,基于Shokrieh-Hashin准则进行局部破坏分析,讨论蒙皮的铺层损伤规律。结果表明:加筋板呈整体一阶屈曲破坏,极限载荷为316.8 kN;壁板下蒙皮的纤维压缩失效是导致加筋板整体破坏的原因;各铺层的面内失效规律基本相同,蒙皮的纤维压缩失效从外层逐渐向内层扩展,且扩展速率逐渐降低。
Complex failure process and forms of composite stiffened panel increase difficulty for application. Based on experimental results to verify the accuracy of the nonlinear finite element method, the progressive failure of the hat-stringer-stiffened composite panel under the external uniform load and in-plane compression was analyzed according to Hashin criterion and maximum Stress Criterion. Then the ultimate load, failure mode and mechanism were discussed. The local failure area of stiffened panel was refined in the sub-model technique of finite element, and the failure behavior of each layer of composite skin was further studied in the Shokrieh-Hashin criterion. The results showed that the failure mode was the first-order buckling failure of the panel and the ultimate load is 316.8 kN. The fiber compression failure of the panels is cause of the overall failure of stiffened panel. The failure law of each layer was the similar. The fiber compression failure of the panels extended from the outer layer to the inner and the expansion rate decreased gradually.
2021,43(2): 20-25 收稿日期:2020-03-17
DOI:10.3404/j.issn.1672-7649.2021.02.004
分类号:U663.9
作者简介:崔进(1992-),男,硕士,工程师,主要从事复合材料结构设计与工艺研究
参考文献:
[1] 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京: 航空工业出版社, 2002.
[2] ELALDI F, COLAK L. Buckling and post-buckling behavior of compression loaded composite panels with hat stiffeners[J]. Journal of Reinforced Plastics & Composites, 2008, 28(20): 2501-2509
[3] ZHU S, YAN J, CHEN Z, et al. Effect of the stiffener stiffness on the buckling and post-buckling behavior of stiffened composite panels - experimental investigation[J]. Composite Structures, 2015, 120: 334-345
[4] MO Y, GE D, ZHOU J. Experiment and analysis of hat-stringer-stiffened composite curved panels under axial compression[J]. Composite Structures, 2015, 123: 150-160
[5] MO Y, GE D, HE B. Experiment and optimization of the hat-stringer-stiffened composite panels under axial compression[J]. Composites Part B Engineering, 2016, 84: 285-293
[6] 孙晶晶. 复合材料帽型筋条脱粘的失效机理分析[D]. 上海: 上海交通大学, 2013.
[7] 张国凡, 孙侠生, 吴存利. 复合材料帽型加筋壁板的失效机制分析与改进设计[J]. 复合材料学报, 2017, 34(11): 2479-2486
[8] 孔斌, 叶强, 陈普会, 等. 复合材料整体加筋板轴压后屈曲失效表征[J]. 复合材料学报, 2010, 27(5): 150-155
[9] 孔斌, 叶强, 陈普会, 等. 复合材料整体加筋板轴压后屈曲的传载机制[J]. 复合材料学报, 2010, 27(5): 142-149
[10] 常园园, 许希武, 郭树祥. 压缩载荷下复合材料整体加筋板渐进损伤非线性数值分析[J]. 复合材料学报, 2011, 28(4): 202-211
[11] 高晶晶, 关志东, 刘德博, 等. 复合材料加筋板后屈曲特性研究[J]. 材料工程, 2011(z1)
[12] 赵维涛, 樊世兵, 刘炜华, 等. 复合材料加筋板极限压缩承载能力可靠性分析[J]. 计算力学学报, 2016, 33(6): 856-862
[13] 徐丽, 李宏源, 王大政, 等. 复合材料帽型骨材强度及刚度影响因素研究[J]. 武汉理工大学学报(交通科学与工程版), 2014, 38(5): 974-978
[14] 潘康华, 田阿利, 叶仁传等. 复合材料夹层板架结构在组合载荷作用下的极限强度研究[J]. 舰船科学技术, 2019, 41(1): 18−23.
[15] 中国船级社. 海上高速船入级与建造规范[M]. 北京: 人民交通出版社, 2015.
[16] HSHIN Z. Failure criteria for unidirectional fiber composites[J]. Journalof Applied Mechanics, 1980, 47(2): 329-334
[17] SHOKRIEH M, LESSARD L, POON C. Three dimensional progressive failure analysis of pin/bolt loaded composite laminates[C]. The 83th Meeting of the AGARD SMP on Bolted Joints in Polymeric Composites, Italy, 1996.