采用基于气体动力的高速射弹并联发射装置,开展并联射弹水下运动的实验研究。利用高速摄像机得到射弹水下运动的画面,并通过图像处理技术提取出流场的演化过程以及射弹的弹道参数,在此基础上分析并联射弹空泡的演化机理和脱落特性,得到了射弹间距对并联射弹水下运动过程的影响。结果表明,并联射弹双空泡受彼此流域压力梯度的影响而表现出不同的演化特性。随着射弹间距的增大,双空泡之间的耦合影响逐渐减弱,下方射弹空泡尺寸逐渐增加,弹道稳定程度逐渐增强,异步并联射弹的尾迹脱落由分叉模式到靠拢模式最后为孤立模式。实验结果对水下多弹体的并联发射具有一定的指导作用。
An experimental study on the underwater motion of parallel projectiles was carried out using a gas-powered high-speed projectile parallel launcher. The high-speed camera is used to obtain the underwater motion of the projectile, and the evolution process of the flow field and the ballistic parameters of the projectile are extracted by image processing technology. Based on these, the evolution mechanism and the shedding characteristics of the parallel projectile cavitation are analyzed. On this basis, the evolution mechanism and shedding characteristics of the parallel projectile cavitation are analyzed, and the influence of the projectile spacing on the underwater motion of the parallel projectile is obtained.The results show that The double-cavity of parallel projectiles is affected by the pressure gradient of each other's watershed and exhibits different evolution characteristics. As the distance between the projectiles increases, the coupling effect between the double cavitation gradually weakens, the size of the lower projectile cavitation gradually increases, and the ballistic stability gradually increases. The wake-off of the asynchronous parallel projectile is from the fork mode to the close mode and finally to the isolated mode. The experimental results have a certain guiding effect on the parallel launch of underwater multiple missiles.
2021,43(2): 71-75 收稿日期:2019-11-07
DOI:10.3404/j.issn.1672-7649.2021.02.015
分类号:TV131.2
作者简介:张鹤(1994-),男,硕士,主要从事多相流体动力学方向
参考文献:
[1] 路丽睿, 魏英杰, 王聪, 等. 双圆柱体低速并联入水过程空泡及运动特性试验研究[J]. 振动与冲击, 2019, 38(7): 42-49
[2] 路丽睿. 双回转体并联入水过程多相流动及运动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[3] LOGVINOVICH G. Some problems of supercavitating flows[J]. Proceedings of NATO-AGARD, 1998
[4] SAVCHENKO Y N. Expermental investigation of supercavitating motion of bodies[R], DTIC Document, 2001.
[5] VLASENKO Y D. Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds[C]//Proceedings of the 5th International Symposium on Cavitation, Osaka, Japan, Paper No Cav03-GS-6-006, 2003: 1−8.
[6] MOSTAFA N, NAYFEH A, VLACHOS P. Cavitating flow over a projectile[C]//39th Aerospace Sciences Meeting and Exhibit, Fluid Dynamics Conference, Reno, NV, 2001.
[7] CAMERON P J, ROGERS P H, DOANE J W. An experiment for the study of free-flying supercavitating projectiles[J]. Journal of Fluids Engineering, 2011, 133(2): 021303
[8] TRUSCOTT T T, EPPS B P, BELDEN J. Water Entry of Projectiles[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378
[9] HONGHUI S, MAKOTO K. Underwater acoustics and cavitating flow of water entry[J]. Acta Mechanica Sinica, 2004, 20(4): 374-382
[10] HONGHUI S, TAKAMI T. Hydrodynamic behavior of an underwater moving body after water entry[J]. Acta Mechanica Sinica, 2001, 17(1): 35-44
[11] 施红辉, 周浩磊, 吴岩. 伴随超空泡产生的高速细长体入水实验研究[J]. 力学学报, 2012, 44(1): 49-55
[12] 易文俊, 熊天红, 王中原, 等. 小空化数下超空泡航行体的阻力特性试验研究[J]. 水动力学研究与进展A辑, 2009(1)
[13] 熊天红, 易文俊. 高速射弹超空泡减阻试验研究与数值模拟分析[J]. 工程力学, 2009(8)
[14] 易文俊, 熊天红, 刘怡昕. 水下高速射弹超空泡形态特性的数值模拟研究[J]. 舰船科学技术, 2008(4)
[15] 曹伟, 王聪, 魏英杰. 自然超空泡形态特性的射弹实验研究[J]. 工程力学, 2006, 23(12): 175-179
[16] 赵成功. 高速射弹非定常运动多相流场与弹道特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.