轮缘推进器作为一种新型的推进方式,取消了螺旋桨推进中轴系的设置,具有舱容占比小、噪声低和振动小等优点,可用于潜艇、鱼雷或者是游艇等海洋航行器,有广泛的应用前景。本文基于 STAR-CCM+仿真软件,针对推进器流场进行数值模拟,采用SST k-ω模型完成对轮缘推进器水动力性能的数值计算,分析了建模时简化推进器驱动环间隙及桨叶弦长和螺距比对推进器水动力性能的影响。
As a new type of propulsion, the rim thruster eliminates the setting of the propeller propulsion middle shaft system. It has the advantages of small cabin capacity, low noise and low vibration. It can be used for submarines, torpedoes or marine crafts such as yachts, which has wide application prospects. Based on the STAR-CCM+ simulation software, the numerical simulation of the propeller flow field is carried out. The SST k-ω model is used to calculate the hydrodynamic performance of the rim thruster. The influences of simplifying the rim clearance and the blade chord length and pitch ratio on the hydrodynamic performance are analyzed during modeling.
2021,43(2): 83-88 收稿日期:2019-12-24
DOI:10.3404/j.issn.1672-7649.2021.02.018
分类号:U661.1
基金项目:国家自然科学基金资助项目(51679097)
作者简介:熊立众(1996-),男,硕士研究生,研究方向为舰船水动力性能
参考文献:
[1] GRAY A, SHAHRESTANI N, FRANK D, et al. Propagator 2013: UF autonomous surface vehicle[J]. AUVSI Foundation’s 6th Annual RoboBoat Competition, Virginia Beach, VA, 2013
[2] 汪勇, 李庆. 新型集成电机推进器设计研究[J]. 中国舰船研究, 2011, 6(1): 82-85
WANG Yong, LI Qing. Design of a new integrated motor propulsion system[J]. Chinese Journal of Ship Research, 2011, 6(1): 82-85
[3] 王汉刚. 美国核潜艇推进系统减振降噪技术发展分析[J]. 舰船科学技术, 2013, 35(7): 149-153
WANG Han-gang. Study of vibration isolation and noise reduction technology in US nuclear submarine propulsion system[J]. Ship Science And Technology, 2013, 35(7): 149-153
[4] WU Y. Design and fabrication of a maneuverable robot for in-pipe leak detection[D]. Massachusetts: Massachusetts Institute of Technology, 2014.
[5] YAKOVLEV A Y, SOKOLOV M A, MARINICH N V. Numerical design and experimental verification of a rim-driven thruster[C]// Second International Symposium on Marine Propulsors, Hamburg, Germany. 2011: 396−403.
[6] 曹庆明, 韦喜忠, 唐登海, 等. 有/无压差的间隙流动对轮缘推进器水动力的影响研究[J]. 水动力学研究与进展, 2015, 30(5): 485-494
CAO Qing-ming, WEI Xi-zhong, TANG Deng-hai, et al. Study of gap flow effects on hydrodynamic performance of rim driver thrusters with/without pressure difference[J]. Chinese Journal of Hudrodynamics, 2015, 30(5): 485-494
[7] Bao-wei SONG, You-jiang WANG, Wen-long TIAN. Open water performance comparison between hub-type and hubless rim driven thrusters based on CFD method[J]. Ocean Engineering, 2015: 103
[8] 赵文峰, 曹庆明, 许影博, 等. 轮缘推进器噪声特征分析研究[J]. 中国造船, 2016, 57(4): 98-108
ZHAO Wenfeng, CAO Qingming, XU Yingbo, et al. Study on noise characteristics of rim driving thrusters[J]. Shipbuilding of CHINA, 2016, 57(4): 98-108
[9] 胡鹏飞, 靳栓宝, 沈洋, 等. 轮缘驱动无轴推进器冷却方案设计与多物理场耦合计算[J]. 船电技术, 2016, 36(3): 28-31
HU Pengfei, JIN Shuanbao, SHEN Yang, et al. Design and multifield coupled analysis of cooling system for PM motor in rim driven propulsor[J]. Marine Electric, 2016, 36(3): 28-31
[10] 付颐鑫. 船舶螺旋桨敞水性能CFD模拟[D]. 大连: 大连海事大学, 2012.
FU Yixin. CFD Simulation of marine propeller open water performance[D]. Dalian: Dalian Maritime University, 2012.
[11] 高飞飞. 基于CFD技术的螺旋桨非定常流场数值模拟[J]. 科学技术与工程, 2011, 11(30): 7564-7569
GAO Feifei. Numerical simulation of unsteady flow around propeller based on CFD technology[J]. Science Technology and Engineering, 2011, 11(30): 7564-7569
[12] 谈微中, 严新平, 刘正林, 等. 无轴轮缘推进系统的研究现状与展望[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(3): 601-605
TAN Wei-zhong, YAN Xin-ping, LIU Zheng-lin, et al. Technology development and prospect of shaftless rim-driven propulsion system[J]. Journal of Wuhan University of Technology(Transportation Science& Engineering), 2015, 39(3): 601-605
[13] 孔斌, 熊立众, 陈林, 等. 轮缘推进器模型试验装置设计研究[J]. 舰船科学技术, 2017, 39(23): 163-166
KONG Bin, XIONG Li-zhong, CHEN Lin, et al. Esearch of the model test device design for rim-driven propulsor[J]. Ship Science And Technology, 2017, 39(23): 163-166
[14] CAI M, YANG C, WU S, et al. Hydrodynamic analysis of a rim-driven thruster based on RANS method[C]. OCEANS 2015-MTS.