外形参数化是水下滑翔机外形优化设计的重要内容,针对现有几何参数化方法在翼身融合水下滑翔机外形参数化中存在的问题,本文提出一种基于FFD和轴变形方法的翼身融合水下滑翔机外形参数化建模方法。该方法首先基于B样条方法,建立翼身融合水下滑翔机外形的FFD参数化模型,实现滑翔机外形的自由变形;然后在此基础上,针对FFD参数化方法优化变量多的缺点,提出一种翼身融合水下滑翔机外形的轴变形参数化方法,对FFD控制体进行间接变形操纵,减少优化变量的数目;最后通过实例对所提方法的有效性进行了验证。
Shape parameterization is an important part of the shape optimization design of underwater glider. In view of the problems existing in the current geometric parameterization methods in the shape parameterization of blended-wing-body underwater glider, this paper proposes a new parametric method of blended-wing-body underwater glider based on FFD and axial deformation method. Firstly, based on the B-spline method, the FFD parametric model of blended-wing-body underwater glider is established to realize the free deformation of the glider shape. Then, aiming at the disadvantage of the FFD method with many optimization variables, an axial deformation parametric method of blended-wing-body underwater glider is proposed to indirectly manipulate the FFD control points to reduce the optimization variables. Finally, the effectiveness of the proposed method is verified by examples.
2021,43(2): 89-92 收稿日期:2019-11-21
DOI:10.3404/j.issn.1672-7649.2021.02.019
分类号:U674.941
基金项目:国家自然科学基金资助项目(51909110);江苏省高等学校自然科学研究资助项目(19KJB570001);江苏省高校高技术船舶协同创新计划(HZ20190019)
作者简介:张代雨(1988-),男,讲师,研究方向为水下航行器多学科设计优化
参考文献:
[1] WOOD S, ALLEN T, KUHN S, et al. The development of an autonomous underwater powered glider for deep-sea biological, chemical and physical oceanography[C]. Oceans. 2007: 1-6.
[2] BACHMAYER R, LEONARD N E, BHATTA P, et al. Dynamics, control and coordination of underwater gliders[M]. Advances in Unmanned Marine Vehicles. 2006.
[3] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-105
[4] LEONARD N E, PALEY D A, LEKIEN F, et al. Collective motion, sensor networks, and ocean sampling[J]. Proceeding of the IEEE, 2007, 95(1): 48-74
[5] 李志伟, 崔维成. 水下滑翔机水动力外形研究综述[J]. 船舶力学, 2012, 16(7): 829-837
[6] 孙春亚, 宋保维, 王鹏. 翼身融合水下滑翔机外形设计与水动力特性分析[J]. 舰船科学技术, 2016, 38(10): 78-83
[7] R. HAIMES AND M. DRELA, On the construction of aircraft conceptual geometry for high-fidelity analysis and design, AIAA Paper 2012-0683, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (Nashville, Tennessee), January 2012.
[8] PIEGL L A, TILLER W. The NURBS book.[M]. Springer Berlin Heidelberg, 1997.
[9] HWANG J, MARTINS J. GeoMACH: Geometry-Centric MDAO of aircraft configurations with high fidelity[C]. Proceedings of the 14th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Indianapolis, IN. 2012.
[10] IVALDI D, SECCO N R, CHEN S, et al. Aerodynamic shape optimization of a Truss-Braced-Wing aircraft[C]. 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2015: 3436.
[11] ECONOMON T D, PALACIOS F, ALONSO J J. Optimal shape design for open rotor blades[J]. AIAA paper, 2012, 3018: 2012
[12] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 151-160