本文与经典实验进行对比,对二维圆柱在不同来流速度下的涡激运动进行研究。将运动系统简化为质量(m)-弹簧(k)-阻尼(ζ)系统,分析浮式圆柱运动的控制方程并通过4阶Runge-Kutta法求解运动微分方程,借助UDF编程嵌入到Fluent求解器中进行求解,结合动网格技术实现流固耦合,对比Jauvtis和Williamson的经典实验以验证数值模拟的可靠性,再现了SS,2S,2T和2P的涡泄模式。虽得到了与Jauvtis和Williamson物理模型实验相近的一些典型结果,没有做更进一步的研究,但通过实验数据与数值模拟的对比,能够区别研究相同质量比下其他不同参数对涡激运动特性的影响。对${m^*}$=1的浮式圆柱与低质量比圆柱${m^*}$=2.6进行涡激运动数值模拟研究对比,发现不同约化速度下对运动频率、涡泄模型等涡激运动特性均有不同程度的影响。
This paper compares with classical experiments and studies the vortex-induced motion of a two-dimensional cylinder under different incoming flow speeds. Simplify the motion system into a mass (m)-spring (k)-damping (ζ) system, analyze the control equations of the floating cylinder motion and solve the differential equations of motion by the fourth-order Runge-Kutta method, and embed it in the Fluent solver with the help of UDF programming The solution is solved in, combined with the dynamic mesh technology to achieve fluid-solid coupling, and the classic experiments of Jauvtis and Williamson are compared to verify the reliability of the numerical simulation, and the vortex leakage modes of SS, 2S, 2T and 2P are reproduced. Although some typical results similar to Jauvtis and Williamson physical model experiments have been obtained, no further research has been done, but through the comparison of experimental data and numerical simulations, the influence of other different parameters on the vortex-induced motion characteristics under the same mass ratio can be distinguished. Comparing the vortex-induced motion numerical simulation study between the floating cylinder with ${m^*}$=1 and the cylinder with low mass ratio ${m^*}$=2.6, it is found that the motion frequency, vortex leakage model and other vortex-induced motion characteristics have different degrees of influence at different reduced speeds.
2021,43(2): 126-130 收稿日期:2020-09-03
DOI:10.3404/j.issn.1672-7649.2021.02.026
分类号:P751
基金项目:国家自然科学基金资助项目(51909148);山东交通学院攀登计划资助项目(SDJTUC1802)
作者简介:孙洪源(1985-),男,教授,主要从事船舶与海洋结构物流固耦合研究
参考文献:
[1] 渠基顺, 管义锋. 柱体涡激运动研究概述[J]. 中外船舶科技, 2013(3): 12-16
[2] 刘为民, 谷家扬, 陶延武, 等. 低质量比圆形四立柱涡激运动特性研究[J]. 振动与冲击, 2015, 34(19): 175-180
[3] VAN DIJK R R T, MAGEE A, PERRYMAN S, et al. Model test experience on vortex induced vibrations of truss spars[C]. Offshore Technology Conference, 2003.
[4] IRANI M, FINN L. Model testing for vortex induced motions of spar platforms[C]. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, OMAE Conference, 2004: 605−611.
[5] VAN DIJK R R T, FOURCHY P, VOOGT A J, et al. The effect of mooring system and sheared currents on vortex induced motions of truss spars[C]. Proceeding of the 22nd International Conference on Offshore Mechanics and Arctic Engineer-ing, OM AE Conference, 2003.
[6] 周 阳, 黄维平. 大直径浮式结构涡激振动的数值模拟[J]. 中国海洋大学学报(自然科学版), 2014, 44(9): 98-103
ZHOU Yang, HUANG Wei-ping. Numerical simulation of the vortex-induced motion of spar platform considering the coupling effect[J]. Periodical of Ocean University of China, 2014, 44(9): 98-103
[7] 王 颖, 杨建民, 李欣, 等. 均匀来流中浮式圆柱的涡激运动研究[J]. 中国海洋平台, 2010, 25(1): 8-15
[8] 许鑫, 王春升, 陈国龙, 等. SDPSO设计关键技术及其在西非海域应用研究[J]. 中国造船, 2019, 060(z1): 379-391
[9] 李坤宏, 陈峥. 有限元分析在船舶复杂结构强度计算与优 化中的应用[J]. 舰船科学技术, 2020, 42(20): 4-6
[10] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509: 23-62
[11] 李 芬, 邹早建. 浮式海洋结构物研究现状及发展趋势[J]. 武汉理工大学学报(交通科学与工程版), 2003, 27(5): 682-686
[12] PAN Z Y, CUI W C, MIAO Q M. Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code[J]. Journal of Fluids and Structures, 2007, 23(1): 23-37