本文针对深海载人潜水器耐压壳用钛合金,开展疲劳性能试验研究,得到该类型钛合金的室温断裂韧性,载荷比R=0.1下的疲劳裂纹扩展门槛值及疲劳裂纹扩展速率,基于选用的疲劳裂纹扩展预报模型,对载荷比R=0.1下的钛合金疲劳裂纹扩展行为进行了预报研究。结果表明:在载荷比不变的前提下,应力强度因子范围是疲劳裂纹扩展速率的主要影响因素,应力强度因子范围的增加会导致疲劳裂纹扩展速率增加;考虑小裂纹效应的疲劳裂纹扩展预报模型可对钛合金的疲劳裂纹扩展行为进行准确预报。
In this paper, the fatigue performance test of titanium alloy materials for pressure-resistant shells of deep-sea manned submersibles is carried out. The fracture toughness of titanium alloy and the fatigue crack growth threshold and fatigue crack growth rate curve at load ratio R=0.1 are obtained. Finally, using the fatigue crack propagation prediction model of titanium alloy material, the fatigue crack propagation behavior of titanium alloy at load ratio R=0.1 was predicted. The results show that the stress intensity factor range is the main influencing factor of fatigue crack growth rate under the premise of constant load ratio. The increase of stress intensity factor range will lead to the increase of fatigue crack growth rate. The fatigue crack propagation prediction model which considering small fatigue crack effect can predict of fatigue crack growth behavior of titanium alloys accurately.
2021,43(3): 14-18 收稿日期:2020-02-26
DOI:10.3404/j.issn.1672-7649.2021.03.003
分类号:U688.2
基金项目:国家自然科学基金青年基金资助项目(BK20160559);国家自然科学基金资助项目(51709134);国家重点研发计划(2016YFCO300603-02)
作者简介:王珂(1980-),女,博士,副教授,研究方向为船舶与海洋结构物安全性
参考文献:
[1] 雷家峰, 马英杰, 杨锐, 等. 全海深载人潜水器载人球壳的选材及制造技术[J]. 工程研究-跨学科视野中的工程, 2016, 8(2): 179–184
[2] PARIS P C. A note on the variables affecting the rate of fatigue crack growth[J]. The Boeing Company, Doc. No. D-17867, Addendum N, 1957.
[3] PARIS P C, GOMEZ M P, ANDERSON W E. A rational analytic theory of fatigue[J]. The Trend in Engineering, 1961, 13(1): 9–14
[4] PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528–533
[5] 邓瑞刚, 毛小南, 杨冠军, 等. 钛合金疲劳行为研究现状[J]. 热加工工艺, 2011, 40(8): 1–4+12
[6] Yang Liu, Zhang Yong-cun, Liu Shu-tian, et al. Effect of unbonded areas around hole on the fatigue crack growth life of diffusion bonded titanium alloy laminates[J]. Engineering Fracture Mechanics, 2016: 163
[7] 吉楠, 卫遵义, 白小亮, 等. TC11钛合金全范围疲劳裂纹扩展速率表征[J]. 理化检验(物理分册), 2016, 52(7): 439–442
[8] 季英萍, 吴素君. 应力比对Ti-6Al-2Zr-1Mo-1V合金疲劳裂纹扩展行为的影响[J]. 航空材料学报, 2018, 38(3): 72–76
[9] 田晨超, 高阳, 张娟, 等. TC4-DT及TC21钛合金疲劳裂纹扩展速率的对比分析[J]. 焊管, 2019, 42(11): 31–34
[10] GBT 6398-2000金属材料疲劳裂纹扩展速率试验方法[S]. 北京: 国家质量技术监督局, 2000.
[11] 王珂. 钛合金室温保载-疲劳寿命预报方法研究[D]. 上海: 上海交通大学, 2015.
[12] CATON M J, JOHN R, PORTER W J, et al. Stress ratio effects on small fatigue crack growth in Ti–6Al–4V[J]. International Journal of Fatigue, 2012, 38: 36–45