为探究多用途船首尾型线变化对船舶水动力性能的影响,采用RBF(Radial Basis Functions)曲面变形方法分别对多用途船首尾型线进行变换,使用优化拉丁超立方法设计计算样本,引入Kriging近似模型解决传统CFD计算耗时的问题。在此基础上,以船舶的阻力性能以及桨盘面伴流不均匀度作为优化目标,利用带精英策略的非支配排序遗传算法(NSGA-II)完成整个型线优化流程。计算结果表明,对于该多用途船,船首形状朝V型发展有利于减小兴波阻力,船尾的V型横剖面在接近推进器处逐渐向U型转变,可以在获得更均匀伴流场的同时对阻力性能影响较小。
In order to study the influence of the variation of multipurpose vessel’s bow line and stern line on the hydrodynamic performance, RBF (Radial Basis Functions) surface deformation method was used to transform the multipurpose vessel's lines, and the optimized Latin square method was used to design the calculation sample. The time-consuming problem of traditional CFD calculation is solved by the Kriging approximation model. On this basis, the ship's resistance and the wave non-uniformity at the propeller disk are taken as the optimazation goals, and the fast and elitist multiobjective genetic algorithm (NSGA-II) is used to complete the whole optimization process. The calculation results show that for the multipurpose vessel, the development of the bow shape towards the V-shape is beneficial to reduce the wave resistance. The V-shaped cross-section of the stern line gradually changes to the U-shape near the propeller, which can obtain a more uniform wake field while the resistance performance is influenced slightly.
2021,43(3): 24-28 收稿日期:2019-12-19
DOI:10.3404/j.issn.1672-7649.2021.03.005
分类号:U661.31
基金项目:教育部财政部重大科研专项(GKZY010004)
作者简介:魏斯行(1995-),男,硕士研究生,研究方向为船舶水动力性能优化和运动控制
参考文献:
[1] YUSUKE T, DANIELE P, EMILIO F C, et al. Computational fluid dynamics-based multiobjective optimization of a surface combatant using a global optimization method[J]. Journal of Marine Science and Technology 13.2(2008): 95−116.
[2] HYUNYUL KIM, CHI YANG. A new surface modification approach for CFD-based hull form Opthnization[C]//9th International Conferences Oil Hydrodynamics, October 11−15, 2010, Shanghai, China.
[3] 王刚成, 马宁, 顾解忡. 基于Kriging代理模型的船舶水动力性能多目标快速协同优化[J]. 上海交通大学学报(自然版), 2018, 52(6): 666–673
[4] 傅慧萍, 陈作钢. 以伴流均匀度为目标的艉部线型优化[J]. 上海交通大学学报, 2010, 44(10): 1429–1433
[5] 张萍. 船型参数化设计[D]. 无锡: 江南大学, 2009.
[6] BUHMANN M D. Radial basis functions: Theory and implementations[M]. Cambridge University Press, 2004.
[7] VAN D P A, HOEKSTRA M. Multi-objective optimization of a tanker afterbody using PARNASSOS[J]. 2009.
[8] KALYANMOY D, AMRIT P, SAMEER A, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary. Computation, 2002, 6(2): 182–197
[9] 刘晓路, 陈英武, 荆显荣, 等. 优化拉丁方试验设计方法及其应用[J]. 国防科技大学学报, 2011, 33(5): 73–77
[10] 翟进乾. 克里金(kriging)插值方法在煤层分布检测中的应用研究[D]. 太原: 太原理工大学, 2008.