风力转子推进装置节能环保,降低推力成本,有利于船舶行业的绿色发展。基于多松弛格子Boltzmann方法,对并列风力助推转子绕流进行数值模拟。首先模拟单圆柱绕流的流动特性,以验证程序的可靠性,重点探究双圆柱的间距比和转速比对圆柱绕流特性的影响。获取圆柱的升阻力系数以及尾流流型,验证临界转速比的存在。结果显示:旋转可以有效地抑制涡的生成和脱落,当转速比达到临界转速比时,漩涡彻底消失,流场变得稳定;时均升力系数的绝对值和时均阻力系数随转速比的增大分别增大和减小。
The wind propulsion device is energy-saving and environmentally friendly, reduces thrust costs, and is conducive to the green development of the ship industry. Based on the multiple-relaxation-time lattice boltzmann method, the flow around parallel wind-driven rotor is numerically simulated in this paper. First, the flow characteristics of a single cylinder was simulated to verify the reliability of the program. Then, the effect of the spacing ratio and rotational speed ratio on the flow characteristics of the double cylinder was studied. The lift coefficient, drag coefficient and wake flow patterns of the cylinder were obtained, and the existence of critical rotational speed ratio was verified. The results show that the rotation of the cylinder can suppress vortex shedding effectively; the absolute value of the mean lift coefficient increases with the increase of the rotational speed ratio, while the trend of the mean drag coefficient is opposite. The purpose of this paper is to provide reference for the control and design method of wind-driven rotor sails.
2021,43(4): 111-117 收稿日期:2020-01-10
DOI:10.3404/j.issn.1672-7649.2021.04.023
分类号:U663
作者简介:穆鑫(1992-),男,硕士研究生,研究方向为船舶动力装置性能与系统优化设计
参考文献:
[1] CHANSON H., Applied hydrodynamics: an introduction[M]. CRC press, 2013.
[2] 陈少峰, 高丽瑾, 恽秋琴, 等. 基于百吨级自航模的试验平台建设及应用[J]. 舰船科学技术, 2018, 40(13): 36-41
CHEN Shao-feng, GAO Li-jin, YUN Qiu-qin, et al. , Construction and application of the experimental platform for hundred tons levelself-propelled ship model[J]. Ship Science and Technology, 2018, 40(13): 36-41
[3] 何颖, 杨新民, 陈志华, 等. 旋转圆柱绕流的流场特性[J]. 船舶力学, 2015, 19(5): 501-508
[4] 周凯, 王震, 陈维山, 等. 格子 Boltzmann 方法在串列双圆柱绕流数值模拟中的应用研究[J]. 船舶力学, 2018, 22(2): 144-155
[5] 巴悦, 史卫成, 何国毅. 串列旋转双圆柱绕流的气动性能分析[J]. 南昌航空大学学报: 自然科学版, 2016, (1): 15-21
[6] NIE D. M., LIN, J. Z. Numerical simulation for flow over two circular cylinders in side-by-side arrangement with lattice Boltzmann method[J]. Chinese Journal of Applied Mechanics, 2008, (4): 22
[7] YOON H. S., CHUN H. H., KIM J. H., et al Flow characteristics of two rotating side-by-side circular cylinder[J]. Computers & Fluids, 2009, 38(2): 466-474
[8] QIAN Y. H., D'HUMIÈRES D., LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. EPL (Europhysics Letters), 1992, 17(6): 479
[9] LALLEMAND P., LUO L. S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6): 6546
[10] SHI Wei-ping, ZU Ying-qing. Evaluation of fluid acting force on the curve boundary in the lattice Boltzmann method[J]. Journal of Jilin University (Science Edition), 2005, 2.
[11] WIESELSBERGER C. Neuere feststellungen uber die gesetze des flussigkeits und luftwiderstands[J]. Phys. Z., 1921, 22: 321
[12] HAMMACHE M., GHARIB M. A novel method to promote parallel vortex shedding in the wake of circular cylinders[J]. Physics of Fluids A: Fluid Dynamics, 1989, 1(10): 1611-1614
[13] CHEN T., ZHANG Q., CHENG L. Performance investigation of 2D lattice Boltzmann simulation of forces on a circular cylinder[J]. Transactions of Tianjin University, 2010, 16(6): 417-423
[14] STOJKOVIĆ D., BREUER M., DURST F. Effect of high rotation rates on the laminar flow around a circular cylinder[J]. Physics of fluids, 2002, 14(9): 3160-3178
[15] 陶实. 格子波尔兹曼方法在计算流体力学中的应用研究[D]. 大连: 大连理工大学, 2013.
[16] CHUNG M. H. Cartesian cut cell approach for simulating incompressible flows with rigid bodies of arbitrary shape[J]. Computers & Fluids, 2006, 35(6): 607-623
[17] KANG S., CHOI H., LEE S. Choi H., Lee S., Laminar flow past a rotating circular cylinder[J]. Physics of Fluids, 1999, 11(11): 3312-3321
[18] SUMNER D., WONG S. S. T., PRICE S. J., et al Fluid behaviour of side-by-side circular cylinders in steady cross-flow[J]. Journal of Fluids and Structures, 1999, 13(3): 309-338