质子交换膜燃料电池和蓄电池构成的混合动力系统在UUV上有着广阔的应用前景。由于燃料电池自身的工作效率和循环寿命与其工作状态直接相关,因此协调2个能量单元之间的功率分配就成了混合动力系统在开发过程中的关键任务。为了利用能量分配使整个系统工况达到最优,一系列最优化控制理论在混合动力系统中得到应用,并发挥了重要作用。为了将系统的等效氢气消耗总量降到最低,本文重点介绍一种针对UUV混合动力系统的基于极小值原理的能量管理策略。相比之前的控制策略,本文方法能够将全局优化问题转化为局部优化问题,且无需全航程的功率信息作为先验知识。最后利用某小型UUV的典型功率负载曲线开展模拟计算,计算结果显示,从3种不同的初始值开始计算过程最终都能收敛至最优解的某个邻域内,说明提出的控制算法具有很好的鲁棒性,能够在UUV的能量管理系统中实现很好的在线功率分配,达到等效氢耗量最小的优化目标。本文方法具有计算效率高、占用内存少的优势,为实现工程应用中的在线调节创造了可能。
Hybrid power system which consists of a proton exchange membrane fuel cell and a battery has great perspective for Unmanned Underwater Vehicles (UUVs). As fuel cell's working point has a direct relationship with its efficiency and lifetime, a key concern of the hybrid power system is the power distribution between the two parts. In order to optimize the power distribution, optimal control method is often equipped with the hybrid power system. Aiming at minimizing the equivalent hydrogen cost, this work present an optimal real-time energy management strategy based on the Pontryagin's minimum principle for UUV's hybrid power system. Compared with some other methods, this approach convert the global optimization into a local one and don't need the whole trip profile as a prior knowledge. In this research, a typical UUV working profile is tested with different initial co-state values to evaluate the proposed method, and the results indicate it shows good robustness and effectiveness. In addition, this method possesses shorter calculation time and smaller storing space, which is helpful for online optimization in actual applications.
2021,43(4): 123-130 收稿日期:2020-11-27
DOI:10.3404/j.issn.1672-7649.2021.04.025
分类号:TP273+.1
基金项目:国家自然科学基金资助项目(61403306)
作者简介:高慧中(1989-),男,博士研究生,工程师,主要研究方向为燃料电池集成控制技术
参考文献:
[1] 钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上)-美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(2): 1-30
QIAN D, ZHAO J, YANG Y. Development trend of military UUV(I): A review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 1-30
[2] 陈强, 张林根. 美国军用UUV现状及发展趋势分析[J]. 舰船科学技术, 2010, 32(7): 129-134
CHEN Q, ZHANG G L. Analysis of current situational development trend of US military UUV[J]. Ship science and technology, 2010, 32(7): 129-134
[3] 严浙平, 吴越媛. UUV闭式循环燃料电池系统与推进功率匹配控制[J]. 化工学报, 2011, 62(1): 170-178
YAN Z P, WU Y Y. Control strategy for power matching between closed-loop circulation fuel cell system and UUV propulsion system[J]. Journal of Chemical Industry and Engineering(CHINA), 2011, 62(1): 170-178
[4] ALAAELDEEN M. E. Ahmed, DUAN Wen-yang. Over on the development of Autonomous underwater vehicles (AUVS). Journal of ship mechanics, 2016, 20(6): 768−787.
[5] 贾同国, 王银山与李志伟, 氢能源发展研究现状. 节能技术, 2011.29(3): 第264−267页.
[6] 陈龙, 王晓亮, 盘朝奉, 等. 燃料电池混合动力车能量管理策略研究[J]. 重庆交通大学学报(自然科学版), 2014, 33(1): 149-152
CHEN L, WANG X L, PAN Z F, et al. Energy management strategy for fuel cell hybrid electric vehicles[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2014, 33(1): 149-152
[7] SCHOUTEN NJ, SALMAN MA, KHEIR NA. Fuzzy logic control for parallel hybrid vehicles[J]. IEEE T Contr Syst T 2002, 10(3): 460e8.
[8] YAN F, WANG J. Hybrid electric vehicle model predictive control torque-split strategy incorporating engine transient characteristics. IEEE T Veh Technol 2012, 61(6): 2458−67.
[9] 周雅夫, 连静, 李启迪. ISG混合动力电动汽车控制策略研究[J]. 仪器仪表学报, 2009, 6(30): 1164-1168
ZHOU Y F, LIAN J, LI Q D. Control strategy of integrated starter/generator hybrid electric vehicle[J]. Chinese Journal of Scientific Instrument, 2009, 6(30): 1164-1168
[10] XU L, LI J, HUA J, LI X, OUYANG M. Optimal vehicle control strategy of a fuel cell/battery hybrid city bus. Int J Hydrogen Energy 2009, 34: 7323−33.
[11] PAGANELLI G, DELPRAT S, GUERRA TM, RIMAUX J, SANTIN JJ. Equivalent consumption minimization strategy for parallel hybrid powertrains[C]//In: IEEE vehicular technology conference, Birmingham Al, US 2002, May 6−9. p. 2076−81.
[12] SCIARRETTA A, BACK M, GUZZELLA L. Optimal control of parallel hybrid electric vehicles[J]. IEEE T Control System 2004, 12(3): 352−63.
[13] ZHANG Xiaohui, LIU Li , DAI Yueling, et al. Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs. International journal of hydrogen energy, 43(2018): 10094−10103.
[14] MOHAMMADIAN M, TAGHI BATHAEE SM, MEHDI ANSAREY MSM. Neuro-genetic energy management for hybrid fuel cell power train. In: IEEE conference on cybernetics and intelligent systems, Singapore 2004, Dec 1−3: 1043−1048.
[15] HOU C, OUYANG M, XU L, et al. Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles[J]. Applied Energy, 2014, 115: 174−189.
[16] 隗寒冰, 刘小飞, 彭志远. 考虑发动机排气背压阈值的柴电混合动力汽车最优控制[J]. 控制理论与应用, 2017, 4(34): 533-540
HUAI H B, LIU X F, PENG Z Y. The optimal control of plug-in diesel hybrid electric vehicle with considering the threshold of exhaust back pressure[J]. Control Theory & Applications, 2017, 4(34): 533-540
[17] 徐梁飞, 李相俊, 华剑锋, 等. 燃料电池混合动力参数辨识及整车控制策略优化[J]. 机械工程学报, 2009, 45(2): 56-61
XU L F, LI X J, HUA J F, et al. Parameter identification and control strategy optimization of hybrid fuel cell powertrain[J]. Journal of mechanical engineering, 2009, 45(2): 56-61
[18] LEE Chien-Hsing, YANG Jian-Ting. Modeling of the Ballard-Mark-V proton exchange membrane fuel cell with power converters for applications in autonomous underwater vehicles[J]. Journal of Power Sources, 196(2011): 3810−3823.
[19] WANG C , NEHRIR M H , SHAW S R. Dynamic models and model validation for PEM fuel cells using electrical circuits[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 442−451.
[20] AMPHLETT, J. C. Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell[J]. Journal of The Electrochemical Society, 1995, 142(1): 9.
[21] Amphlett J C, Mann R F, B. A. Peppley, et al. A model predicting transient responses of proton exchange membrane fuel cells. Journal of Power Sources, 1996, 61(1-2): 183−188.
[22] KHAN M J, IQBAL M T. Dynamic modelling and simulation of a fuel cell generator[J]. Fuel Cells, 2005, 5(1): 97-104.
[23] NGUYEN, T. V, WHITE R. E. A water and heat management model for proton Exchange-Membrane fuel cells[J]. Journal of the Electrochemical Society, 140, 2178-2186.
[24] ROWE A , LI X. Mathematical modeling of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2001, 102(1−2): 82−96.
[25] 秦大同, 曾育平, 苏岭, 等. 基于近似极小值原理的插电式混合动力汽车实时控制策略[J]. 机械工程学报, 2015, 51(2): 134-140
QIN D T, ZENG Y P, SU L, et al. Plug-in hybrid vehicle’s real-time control strategy based on approximate Pontryagin’s minimum principle[J]. Journal of Mechanical Engineering, 2015, 51(2): 134-140