针对全局路径规划研究中遗传算法存在搜索范围广而导致收敛速度慢的问题,本文提出一种混合优化的全局路径规划方法,完成对图像读取、处理后使用A*算法预处理缩小可行区域从而提高收敛速度。所提出的混合优化规划方法主要优化遗传算法的初始种群,在不影响最终路线的情况下,缩小初始种群的搜索范围,提高算法进行全局路径规划的速度,快速有效的规划出全局路线。另外本文给出一种评价体系对规划结果进行定量的避障评价,评价结果能够以数值形式对规划结果进行综合评价,评价结果显示通过混合优化算法规划出的路径具有更佳的安全性。
In order to solve the problem of slow convergence due to the wide search range of genetic algorithm in global path planning, this paper proposes a hybrid optimization global path planning method, which can reduce the feasible area and improve the convergence speed after reading and processing the image. The proposed hybrid optimization planning method mainly optimizes the initial population of genetic algorithm, reduces the search scope of the initial population, improves the speed of global path planning, and quickly and effectively plans the global path without affecting the final path. In addition, this paper presents an evaluation system for quantitative obstacle avoidance evaluation of planning results. The evaluation results can comprehensively evaluate the planning results in numerical form. The evaluation results show that the path planned by hybrid optimization algorithm has better security.
2021,43(4): 149-154 收稿日期:2020-01-08
DOI:10.3404/j.issn.1672-7649.2021.04.030
分类号:U661.43
基金项目:国家自然科学基金资助项目(51609033);辽宁省自然科学基金资助项目(20180520005);辽宁省重点研发指导计划资助项目(2019JH8/10100100);大连市软科学研究计划资助项目(2019J11CY014);中央高校基本科研业务费专项基金资金资助项目(3132019005,3132019311)
作者简介:韩新洁(1969-),女,副教授,主要从事控制理论与控制工程、检测技术与自动化装置研究
参考文献:
[1] VEERS J, BERTRAM V. Development of the USV multi-mission surface vehicle Ⅲ[C]//In 5th International Conference on Computer Application and Information Technology in the Maritime Industries, Leiden, The Netherlands, 2006: 299 − 314.
[2] 陈超, 唐坚. 基于可视图法的水面无人艇路径规划设计[J]. 中国造船, 2013, (1): 135-141
[3] CAO J, LI Y, ZHAO S, et al. Genetic-algorithm-based global path planning for AUV[C]//2016 9th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2016, 2: 79 − 82.
[4] MONTIEL O, OROZCO-ROSAS U, SEPÚLVEDA R. Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles[J]. Expert Systems with Applications, 2015, 42(12): 5177-5191
[5] 王哲, 孙树栋, 曹飞祥. 动态环境下移动机器人路径规划的改进蚁群算法[J]. 机械科学与技术, 2013, 32(1): 42-46
[6] 李天成, 孙树栋, 高扬. 基于扇形栅格地图的移动机器人全局路径规划[J]. 机器人, 2010, 32(4): 547-552
[7] 陈华, 张新宇, 姜长锋, 等. 水面无人艇路径规划研究综述[J]. 世界海运, 2015, 38(11): 30-33
[8] 张玉奎. 水面无人艇路径规划技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[9] WANG Y, LIANG X, LI B, et al. Research and implementation of global path planning for unmanned surface vehicle based on electronic chart[C]//International Conference on Mechatronics and Intelligent Robotics. Springer, Cham, 2017: 534 − 539.
[10] CAO L. Improved genetic algorithm for fast path planning of USV[C]//Ninth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2015). International Society for Optics and Photonics, 2015.
[11] 陈超, 耿沛文, 张新慈. 基于改进人工势场法的水面无人艇路径规划研究[J]. 船舶工程, 2015, (9): 72-75
[12] 石鸿雁, 孙茂相, 孙昌志. 未知环境下移动机器人路径规划方法[J]. 沈阳工业大学学报, 2005, (1): 63-69
[13] 孙晓界. 无人水面艇实时路径规划系统研究[D]. 大连: 大连海事大学, 2016.
SUN Xiao-jie. Research on real-time path planning system for unmanned surface vessel[D]. Dalian: Dalian Maritime University, 2016.
[14] 王雷, 李明, 蔡劲草, 等. 改进遗传算法在移动机器人路径规划中的应用研究[J]. 机械科学与技术, 2017, 36(5): 711-716
[15] 范云生, 郭晨, 赵永生, 等. 时变漂角下USV直线路径跟踪控制器设计与验证[J]. 仪器仪表学报, 2016, (11): 2514-2520
FAN Yun-sheng, GUO Chen, ZHAO Yong-sheng, et al. Design and verification of straight line path following controller for USV with time-varying drift angle[J]. Chinese Journal of Scientific Instrument, 2016, (11): 2514-2520
[16] 张斌, 郑中义. 以实习船为教学基地的校企联合新型授课模式研究[J]. 航海教育研究, 2018, 35(4): 85-88
[17] 刘纪磊, 王莉莉, 张兆宁. 基于RNP的A* 算法动态航路规划研究[J]. 航空计算技术, 2011, 41(2): 33-35
LIU Ji-lei, WANG Li-li, ZHANG Zhao-ning. Research on A* algorithm dynamic route planning based on RNP[J]. Aeronautical Computing Technique, 2011, 41(2): 33-35
[18] 杨璐, 汪博涵, 张雪洁. 基于A*算法的AGV路径规划研究[J]. 公路与汽运, 2014, (163): 47-49
[19] HOLLAND J H. Adaptation in natural and artificial systems[M]. ANN Arbor: The university of Michigan Press, 1975: 45 − 47.
[20] 马永杰, 云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, (04): 1201-1206+1210
MA Yong-jie, YUN Wen-xia. Research progress of genetic algorithm[J]. Application Research of Computers, 2012, (04): 1201-1206+1210
[21] 孟祥杜. 无人船路径规划算法研究[D]. 天津: 天津理工大学, 2017.
MENG Xiang-du. Research on path planning algorithm for unmanned ship[D]. Tianjin: Tianjin University of Technology, 2017.
[22] 李连鹏, 苏中, 解迎刚, 等. 基于遗传算法的机器鱼水中路径规划[J]. 兵工自动化, 2015, 34(12): 93-96
[23] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]. Autonomous Robot Vehicles. Springer, New York, NY, 1986: 396-404.
[24] LI D, WANG P, DU L. Path planning technologies for autonomous underwater vehicles-A review[J]. IEEE Access, 2019, (7): 9745-9768
[25] 修彩靖, 陈慧. 基于改进人工势场法的无人驾驶车辆局部路径规划的研究[J]. 汽车工程, 2013, 35(9): 808-811
[26] 孙炜, 吕云峰, 唐宏伟, 等. 基于一种改进 A* 算法的移动机器人路径规划[J]. 湖南大学学报 (自然科学版), 2017, 44(4): 94-101
SUN Wei, LV Yun-feng, TANG Hong-wei, et al. Mobile robot path planning based on an improved A* algorithm[J]. Journal of Hunan University(Natural Sciences), 2017, 44(4): 94-101
[27] KANAKAKIS V, SPANOUDAKIS P, TSOURVELOUDIS N. Optimized design of an unmanned surface vehicle[C]//Elmar 09 International Symposium. IEEE, 2009.181 − 184.
[28] NAEEM W. Evasive decision making in uninhabited maritime vehicles[C]//World Congress, 2011.12833 − 12838.
[29] 陈成, 何玉庆, 卜春光, 等. 基于四阶贝塞尔曲线的无人车可行轨迹规划[J]. 自动化学报, 2015, (3): 486-496
CHEN Cheng, HE Yu-qing, BU Chun-guang, et al. Feasible trajectory generation for autonomous vehicles based on quartic bezier curve[J]. ACTA Automatica Sinica, 2015, (3): 486-496