声诱饵是水声对抗中的重要武器,其对抗性能受接收信号质量的影响,而电子舱的散射声场是引起接收信号畸变的因素之一。为此,本文利用有限元软件COMSOL Multiphysics计算诱饵电子舱的散射声场,通过频域间接法获取有/无电子舱时的接收信号,利用相关分析法获取两信号之间的相关系数,进而评估接收信号受电子舱影响的畸变程度。仿真结果表明,接收信号质量和散射声压呈负相关,接收点远离电子舱、置于电子舱圆头正前方以及采用具有吸收特性的材料可以有效地提高接收信号的质量,在工程应用中具有指导意义。
Acoustic bait is an important weapon in underwater acoustic countermeasures. Its countermeasure performance is affected by the quality of the received signal, and the scattered sound field of the electronic cabin is one of the factors that cause the distortion of the received signal. To this end, this article uses COMSOL Multiphysics to calculate the scattered sound field of the bait electronic cabin, obtain the received signal with or without the electronic cabin through the frequency domain indirect method, and use the correlation analysis method to obtain the correlation coefficient between the two signals, and then evaluate the degree of distortion of the received signal affected by the electronic cabin. Simulation results show that there is a negative correlation between the received signal quality and the scattered sound pressure, and the receiving point is far away from the electronic cabin, placed above the round head of the electronic cabin, and the use of materials with absorption characteristics can effectively improve the quality of the received signal, which has guiding significance in engineering applications.
2021,43(4): 163-166 收稿日期:2020-02-23
DOI:10.3404/j.issn.1672-7649.2021.04.033
分类号:TP391.9
作者简介:唐丽媛(1995-),女,硕士研究生,研究方向为声学仿真及系统开发
参考文献:
[1] 李本昌, 刘春跃, 郑援. 现代水声对抗装备发展及其对海战的影响[J]. 鱼雷技术, 2011, 19(6): 468-472
LI Ben-chang, LIU Chun-yue, ZHENG Yuan. Development of modern acoustic countermeasure equipments and its effect on sea warfare[J]. Torpedo Technology, 2011, 19(6): 468-472
[2] 汪伟, 李本昌, 罗笛. 潜艇水声对抗及水声对抗器材的应用[J]. 指挥控制与仿真, 2008, (5): 102-105
WANG Wei, LI Ben-chang, LUO Di. Acoustic warfare of submarine and application of acoustic countermeasure equipment[J]. Command Control and Simulation, 2008, (5): 102-105
[3] 孙仲阜. 水声对抗系统中声诱饵仿真研究[J]. 声学技术, 2003, (2): 113-116
SUN Zhong-fu. Acoustical decoy simulation using underwater acoustical warfare simulation system[J]. Technical Acoustics, 2003, (2): 113-116
[4] 陈敬军. 鱼雷防御系统中软杀伤器材的现状及其发展趋势[J]. 声学技术, 2013, (4): 342-348
[5] MULTIPHYSICS C. Introduction to COMSOL Multiphysics®[J]. COMSOL Multiphysics, Burlington, MA, accessed Feb, 1998, 9: 2018
[6] 卢笛. 基于有限元原理的弹性目标声散射计算[D]. 哈尔滨: 哈尔滨工程大学, 2014.
LU Di. Researches on acoustic scattering of elastic target on finite element methods[D]. Harbin: Harbin Engineering University, 2014.
[7] 栾经德, 范军. 水中目标回波的时频分析方法研究[C]// 中国声学学会水声学分会2011年全国水声学学术会议论文集. 2011.
[8] 任鹏. 弹性圆柱壳体目标回波结构分析[D]. 哈尔滨: 哈尔滨工程大学, 2007.
[9] 江征风. 测试技术基础[M]. 北京: 北京大学出版社, 2007.
[10] 温永仙. 概率论与数理统计[M]. 北京: 高等教育出版社, 2010.
[11] 杨伟新, 王平, 雷沫枝, 等. EMD-PCA 与相关分析在航空发动机弹支动应力信号中的应用[J]. 噪声与振动控制, 2015, 35(6): 87-90
YANG Wei-xin, WANG Ping, LEI Mo-zhi, et al. Application of EMD-PCA and correlation analysis in dynamic stress signal analysis of the aero-engine elastic supporters[J]. Noise and Vibration Control, 2015, 35(6): 87-90
[12] 汤渭霖, 范军, 马忠成. 水中目标声散射[M]. 北京: 科学出版社, 2018.
[13] 姜姝. 水下目标回波几何亮点结构的形态学研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
JIANG Yan. Morphological research on underwater target echo geometric highlight structure[D]. Harbin: Harbin Engineering University, 2014.