现代船舶无论是单体船型还是多体船型,方尾都得到了广泛的运用,尤其对于三体船型,其多为喷水推进系统,船型设计时主体大多采用了较大方尾的设计。方尾船型在航行过程中,方尾后流场及出水情况随航速不断变化,这也一直是方尾船型阻力预报过程中的重点与难点。基于改进后的近场兴波方法,并对方尾后区域采取特殊处理,结合近水面网格快速划分的方法,对方尾船型的兴波阻力及航行姿态进行预报。得到不同航态下湿表面积后,预报船体总阻力。结合经验公式对低航速下的方尾静水力进行估算。以具有较大方尾的某三体船型为例进行计算,并将计算结果与实验值及部分软件参考结果进行对比,证明了理论方法可行有效。
For modern ship, transom stern is widely used in not only mono-hull ship but also high-performance ship. During the sail of transom-stern ship, the flow field behind the transom stern and the emergence of transom stern is changing with the velocity, which is important and difficult for the resistance prediction. Based on the improved Dawson’s method, special treatment is used in the field behind transom stern, and quick grid-generation method near the water plane is connected to predict the wave making resistance and hull gesture of transom-stern ship. Total resistance is predicted by the calculated wetted surface area in different velocities. The hydrostatic force acted on the transom stern is calculated by empirical formula. An actual trimaran with large transom stern is taken as an example for calculation, and the result is compared with experimental result and some reference result by software. Theoretical method is proved valid.
2021,43(5): 42-47 收稿日期:2020-11-12
DOI:10.3404/j.issn.1672-7649.2021.05.009
分类号:U661.31
作者简介:刘杨(1990-),男,工程师,研究方向为高性能船艇设计与CFD技术
参考文献:
[1] 邹早建, 罗青山, 史一鸣. 小水线面双体船阻力预报研究[J]. 中国造船, 2005, 168(1): 14–21
[2] 羊少刚, 李干洛, 余灵. 高速双体船兴波阻力的数值计算[J]. 自然科学版本, 1995, 23(10): 16–25
[3] 黄鼎良. 小水线面双体船性能原理[M]. 北京: 国防工业出版社, 1993.
[4] 陈京普, 朱德祥, 何术龙. 双体船/三体船兴波阻力数值预报方法研究[J]. 船舶力学, 2006, 10(2): 23–29
[5] DAWSON C W. A Practical Computer Method for Solving Ship-Wave Problems[C]. Second International Conference on Numerical Ship Hydrodynamics, 1977: 30-38.
[6] RAVEN H. C., 1994. Nonlinear ship wave calculations using the rapid method[C]// In: Sixth International Conference on Numerical Ship Hydrodynamics, Iowa City.
[7] RAVEN H. C., 1996. A solution method for the nonlinear ship wave resistance problem[D]. Delft, Netherlands: Delft University of Technology.
[8] TARAFDER M S, SUZUKI K. Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method[J]. Ocean Engineering, 2008, 35(5): 536–544
[9] TARAFDER S M, SUZUKI K. Wave-Making Resistance of a Catamaran Hull in Shallow Water Using a Potential-Based Panel Method[J]. Journal of Ship Research, 2008, 52(1): 16–29
[10] 龚家烨, 李云波, 马庆位. 自由面条件ΦZZ项对非对称双体船阻力及航态预报影响[J]. 中国造船, 60(1): 103−114.
[11] 贺五洲, 程明道, 俞汉祥. 方艉舰船及加装尾板的兴波阻力计算[J]. 中国造船, 1998(2): 13
[12] 刘应中. 船舶兴波阻力理论[M]. 北京: 国防工业出版社, 2003: 81−91.
[13] 王中, 卢晓平, 王玮. 考虑升沉和纵倾的方尾船非线性兴波阻力计算[J]. 水动力学研究与进展, 2010(3): 150–156
[14] 周广利. 三体船型阻力预报、优化与系列性试验分析研究[D]. 哈尔滨工程大学, 2010.
[15] PENG H, SHAOYU N, QIU Wei. Wave pattern and resistance prediction for ships of full form[J]. Ocean Engineering, 2014, 87(5): 162–173
[16] SHERBAZ S. Ship Trim Optimization for Reducing Resistance by CFD Simulations[D]. Harbin, China, Harbin Engineering University, 2014.