本文基于一艘典型的单体试验艇(长宽比约为11∶1),在单体试验艇艇型参数基础上考虑其综合性能(快速性、操纵性)进行双体无人艇的艇型综合优化设计分析。讨论不同子目标函数的分配权重时,优化结果随着不同遗传代数的变化,根据优化计算得到了设计排水量100 t的包括低、中和高速双体无人艇的9组最优化结果。根据优化结果得到遗传算法的收敛代数,分析子目标函数关于吃水敏感度,并探讨影响操纵性性能的艇型瘦长度和艇型中纵剖面投影的关系。运用单体艇进行双体无人艇的优化设计办法可为相似的无人艇性能优化设计提供参考,得到的9组优化结果可用于今后加入更多性能指标进行优化提供对比分析。
In this paper, supported by a typical mono-type test boat (the aspect ratio is about 11∶1), the comprehensive optimization design of the catamaran unmanned surface vehicle is analyzed based on the mono-type test boat's comprehensive performance (rapidity and maneuverability). By setting different sub-goal functions with the distribution of weight and change of different genetic algebra, the optimization results were calculated according to the optimization design of displacement of 100 t including low, medium and high speed catamaran unmanned surface vehicles. According to the optimization results, we obtained the algebraic convergence of the genetic algorithm, analyzed the objective function sensitivity about the draft, and discussed the influence of maneuverability performance between boat thin length and boat in longitudinal projection relationship. In this paper, the optimal design method of the catamaran unmanned surface vehicle by using a single boat can provide a reference for the performance optimization design of the relevant unmanned surface vehicles. Nine groups of optimization results of this paper can be utilized to add more performance indicators for optimization in the future to provide comparative analysis.
2021,43(5): 69-75 收稿日期:2020-02-27
DOI:10.3404/j.issn.1672-7649.2021.05.014
分类号:U664
作者简介:汪保江(1994-),男,硕士研究生,研究方向为船舶结构物设计制造
参考文献:
[1] YAN R, PANG S, SUN H, et al. Development and missions of unmanned surface vehicle[J]. Journal of Marine Science and Application, 2010, 9(4): 451–457
[2] 胡建章, 唐国元, 王建军, 等. 基于自适应反步滑模的水面无人艇集群控制[J]. 中国舰船研究, 2019, 14(6): 1–7
[3] MAKHSOOS A, MOUSAZADEH H, MOHTASEBI S S. Evaluation of some effective parameters on the energy efficiency of on-board photovoltaic array on an unmanned surface vehicle[J]. Ships and Offshore Structures, 2019, 14(5): 492–500
[4] STATECZNY A, BURDZIAKOWSKI P. Universal autonomous control and management system for multipurpose unmanned surface vessel[J]. Polish Maritime Research, 2019, 26: 30–39
[5] 魏成柱, 李英辉, 王健, 等. 新型高速无人艇船型和水动力特性研究[J]. 中国造船, 2017, 58(3): 102–113
[6] 刘曼. 一种水面无人艇艇型优化及远程设计系统初步研究[D]. 镇江: 江苏科技大学, 2018.
[7] 罗富强, 霍聪, 高霄鹏, 等. 多航态高速无人艇阻力试验研究[J]. 舰船科学技术, 2019, 41(23): 58–63
[8] 王超, 林扬, 胡志强, 等. 基于均匀有理B样条的小水线面双体无人艇参数化建模方法[J]. 舰船科学技术, 2017, 39(23): 143–148+166
[9] MINISCI E, LIQIANG H, VASILE M. Multidisciplinary design of a micro-USV for reentry operations[C]//AIAA/AAS astrodynamics specialist conference. 2010: 7968.
[10] 曹雪. 一种全绿色能源SWATH-USV艇型初步综合优化分析[D]. 镇江: 江苏科技大学.
[11] 范尚雍. 船舶操纵性[M]. 北京: 国防工业出版社, 1988. 48−50.
[12] 赵嘉祺. 基于改进遗传算法的水面无人艇避障问题研究[D]. 天津: 天津理工大学, 2019.
[13] 罗凤鸣, 吕方林, 侯宗琰. 基于精英保留策略与爆炸算子的改进遗传算法[J]. 西华大学学报(自然科学版), 2018, 37; 162(3): 89–94
[14] 魏子凡, 井升平, 杨松林. 基于改进遗传算法的新型水面无人艇性能综合优化分析[J]. 江苏科技大学学报(自然科学版), 2017(1)
[15] 曹道友. 基于改进遗传算法的应用研究[D]. 合肥: 安徽大学, 2010.
[16] 张晶, 翟鹏程, 张本源. 惩罚函数法在遗传算法处理约束问题中的应用[D].武汉: 武汉理工大学, 2002.