为满足内河8 kn水流条件下航行器稳定航行性能要求,提出一种低流阻、可快速拆卸水下遥控航行器(ROV)总体结构。采用外部流线外形+内部开放框架的设计方法:外部采用Nystrom线型形成外形框架,通过样条曲面生成技术生成外形曲面,完成流体外形设计;内部框架采用横骨架式承载结构,使用标准型材组装框架,各传感器、机电设备、浮体及尾部平衡翼与框架固连。经流体阻力仿真及框架结构有限元冲击仿真分析,流体阻力较开架式总体结构减小90%以上,抗冲击性能可靠,能够满足高流速下的航行要求。本文减阻结构设计方法兼顾了减阻、模块化快速拆装和低成本易实现等优点,对其他水下航行器总体结构设计具有借鉴意义。
In order to meet the requirement of stable navigation performance of the underwater remote control vehicle (ROV) under the con-dition of 8 water-saving flow in inland river, a low resistance and rapid expansion structure of the ROV is studied. The design method of external streamlined shape + internal open frame is adopted: Nystrom linear shape frame is used to form external shape frame, Bessel spline surface generation technology is used to generate external shape surface and complete fluid shape design; the internal frame adopts transverse skeleton bearing structure, uses standard profiles to assemble frame, sensors and electromechan-ical equipment. The floating body and the tail balancing wing are fixed to the frame, and the tail balancing wing is added to im-prove the overall static stability. Through the fluid resistance simulation and finite element impact simulation analysis of frame structure, the fluid resistance is reduced by more than 90% compared with the open-shelf structure, and the anti-impact perfor-mance is reliable, which can meet the navigation requirements at high velocity. This drag reduction structure design method takes into account the advantages of drag reduction, modular rapid disassembly and assembly, low cost and easy realization, and has reference significance for the overall structure design of other underwater vehicles.
2021,43(5): 76-80 收稿日期:2020-08-18
DOI:10.3404/j.issn.1672-7649.2021.05.015
分类号:LU66
基金项目:国家重点研发计划资助项目(2018YFC0810404)
作者简介:张凯(1992-),男,硕士,研究方向为水中兵器总体技术
参考文献:
[1] 王妹婷, 齐永锋, 戴志光, 等. 小型水下机器人外形及其直航阻力特性研究[J]. 机械设计与制造, 2013(12): 142–144
WANG Mei-ting, QI Yong-feng, DAI Zhi-guang, et al. Research on shape and linear sailing resisitance character of mini underwater robot[J]. Machinery Design & Manufacture, 2013(12): 142–144
[2] 刘正元, 王磊, 崔维成. 国外无人潜器最新进展[J]. 船舶力学, 2011, 015(10): 1182–1193
LIU Zheng-yuan, WANG Lei, CUI Wei-cheng. State-of-the-art development of the foreign unmanned submersibles[J]. Journal of Ship Mechanics, 2011, 015(10): 1182–1193
[3] HENRIKSEN L, BJERRUM A, ISHOY A. Sea trials of MARTIN - a European survey AUV[C]// Oceans 95 Mts/ieee Challenges of Our Changing Global Environment Conference. IEEE, 1995.
[4] BEIS, A. A Finite Element Analysis of the NPS Autonomous Underwater Vehicle Intended to Operate in Deep Waters[D]. NAVAL POSTGRADUATE SCHOOL Monterey, California, 2001.
[5] 林小平. 潜艇水动力计算及型线生成研究[D]. 武汉: 武汉理工大学, 2005.
LIN Xiao-ping. Research on the hydrodynamic calculation and the generation of submarine profile[D]. Wuhan: Wuhan University of Technology, 2005.
[6] 王妹婷, 齐永锋, 汤方平, et al. 水下机器人外形优化设计[J]. 机床与液压, 2014(5): 76–79
WANG Mei-ting, QI Yong-feng, TANG Fang-ping, et al. Shape optimal design of underwater robot[J]. Machine Tool & Hydraulics, 2014(5): 76–79
[7] 沈海龙, 杜茉, 苏玉民. 微小型水下机器人载体外形的设计研究[C]// 中国海洋. 2009.
SHEN Hai-long, DU Mo, SU Yu-min. Research on the shape design of the micro underwater vehicle[C]// China Ocean. 2009.
[8] 詹熙达. CATIA V5R20曲面设计教程[M]. 机械工业出版社, 2013.
[9] 李伟锋, 刘海峰, 龚欣. 工程流体力学[M]. 华东理工大学出版社, 2016.
[10] 薛侠峰, 严天宏. 水下自航行器外形及水动力性能优化[J]. 计算机测量与控制, 2016, 24(3): 228−230.
[11] 杜向党, 石秀华, 史娟娟. 水下航行器壳体外形优化设计[J]. 机械设计与制造, 2005(5): 27−28.
[12] 魏子凡, 俞强, 杨松林. 基于CFD不同AUV艇体的阻力性能分析[J]. 中国舰船研究, 2014(3): 28−37.
Analysis of the Resistance Performance for Different Types of AUVs Based on CFD[J]. Chinese Journal of Ship Research, 2014(3): 28−37.