针对船台测量场中由测量误差和算法误差所引起的公共点位置偏差,本文采用联合平差算法实现船台测量场的标定,该方法基于最小二乘原理和条件平差给出船台测量场公共点位置的误差方程和约束条件方程,并根据此方程得到满足船台测量场公共点位置误差最小的坐标转换参数求解方法。实验结果证明,该方法有效减少了利用多级转站方法构建船台测量场时的公共点位置误差。
Aiming at the common point error caused by measuring error and algorithm error in slipway measurement field, a joint adjustment calibration method of slipway measurement field is proposed. Based on the least squares principle and the conditional adjustment, the error equation and the constraint equation of the common point position are obtained. According to the equation, the coordinate transforming parameter solving method which satisfies the minimum position error of the common point in slipway measurement field is obtained. The experimental results show that the method effectively reduces the common point error of slipway measurement field constructed by multistage station transforming.
2021,43(5): 97-101 收稿日期:2019-10-14
DOI:10.3404/j.issn.1672-7649.2021.05.020
分类号:U673.71
基金项目:国家自然科学基金资助项目(51609253)
作者简介:丰寅帅(1995-),男,硕士研究生,研究方向为舰船精度建造
参考文献:
[1] 范春艳, 刘尚国, 张金榜. 全站仪构建全局测量空间的转站精度仿真分析[J]. 测绘科学, 2016, 41(12): 248–253
[2] 王欣宇, 范百兴, 欧健, 等. 一种船舶坐标测量方法[J]. 测绘与空间地理信息, 2017, 40(12): 205–208
[3] 章平, 常晏宁, 王皓. 基于全站仪的大尺寸测量场数据融合技术[J]. 机械设计与研究, 2019, 35(03): 140–144
[4] ARUN K S, HUANG T S, BLOSTEIN S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, PAMI-9(5): 698–700
[5] BERTHOLD K P H. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A, 1987, 4(4): 629–642
[6] BERTHOLD K P H, HILDEN H M, NEGAHDARIPOURT S. Closed-form solution of absolute orientation using orthonormal matrices[J]. Journal of the Optical Society of America A, 1988, 5(7): 1127–1135
[7] 王乐洋, 于冬冬. 病态总体最小二乘问题的虚拟观测解法[J]. 测绘学报, 2014, 43(6): 575–581
[8] 王乐洋, 赵英文, 陈晓勇, 等. 多元总体最小二乘问题的牛顿解法[J]. 测绘学报, 2016, 45(4): 411–417
[9] 王乐洋, 于冬冬, 吕开云. 复数域总体最小二乘平差[J]. 测绘学报, 2015, 44(8): 866–876
[10] SCHAFFRIN B, FELUS Y A. An algorithmic approach to the total least-squares problem with linear and quadratic constraints[J]. Studia Geophysica et Geodaetica, 2009, 53(1): 1–16
[11] SCHAFFRIN B, WIESER A. Empirical affine reference frame transformations by weighted multivariate TLS adjustment[J]. Geodetic Reference Frames, 2009, 13(4): 213–218
[12] SCHAFFRIN B, FELUS Y A. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms[J]. 2008, 82(6): 373−383.
[13] CALKINS J M, SALERNO R J. A practical method for evaluating measurement system uncertainty [C] // The 2000 Boeing Large Scale Metrology Conference, Long Beach, CA, 2000.
[14] MEID A. Individual vs uniform weighting of measurements and constraints in industrial measurement networks[J]. CMSC, 1999
[15] 费业泰. 误差理论与数据处理[M]. 北京: 机械工业出版社, 2015.
[16] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M]. 武汉: 武汉大学出版社, 2014.
[17] 潘国荣. 船舶测量自由移站及多站转换参数的整体平差[J]. 山东科技大学学报(自然科学版), 2013, 32(3): 64–70