针对目前水下地形辅助导航性能在单一算法下受多因素影响而无法得到最佳发挥的问题,采用双线性插值法制备了相应分辨率的水下数字地图,采用地形轮廓相关匹配(TERCOM)算法和基于直接概率准则的质点滤波(PMF)算法组成的组合匹配算法,较为全面地仿真分析了潜航器航速、测深误差、航向误差、航速误差、初始位置偏差和水下地形特征等诸多因素对导航性能的影响规律,对组合算法在复杂条件下的应用性能进行了剖析。仿真结果表明,在复杂条件下组合算法具有较强的稳定性和抗误差性,通过合理地选择应用参数,可有效降低匹配误差,提高导航性能,研究成果可为匹配算法在水下导航工程实践中的应用提供参考。
Aiming at the problem that the underwater navigation performance is affected by many factors and cannot get the best performance under a single algorithm, the underwater digital map with corresponding resolution is prepared by bilinear interpolation method, and a combined matching algorithm consisting of the terrain contour correlation matching (TERCOM) algorithm and the particle mass filtering (PMF) algorithm based on direct probability criterion is adopted. The simulation of the effects of speed, depth error, heading error, speed error, initial positional deviation, underwater topographical features and other factors on navigation performance is carried out in a comprehensive way. And the application ability of combination algorithm under complex conditions is analyzed. The simulation results show that the combination matching algorithm has strong stability and better error resistance under complex conditions. By reasonably selecting the application parameters, the matching error can be reduced effectively and the navigation performance can be improved. The research results can provide reference for the better application of the matching algorithm in the practice of underwater navigation engineering.
2021,43(5): 138-144 收稿日期:2019-09-28
DOI:10.3404/j.issn.1672-7649.2021.05.029
分类号:TJ630
基金项目:国防科技预研项目(3020605010201)
作者简介:徐振烊(1994-),男,硕士研究生,主要研究方向为武器系统运用与保障工程
参考文献:
[1] KIM Y, PARK J, BANG H. Terrain-referenced navigation using an interferometric radar altimeter[J]. Navig. J. Inst. Navig., 2018, 65: 157–167
[2] CLAUS B, BACHMAYER R. Terrain-aided navigation for an underwater glider[J]. J. Field Robot., 2015, 32: 935–951
[3] 高永琪, 刘洪, 张毅. 测量误差对水下地形匹配性能的影响研究[J]. 箭弹与制导学报, 2014, 34(1): 180–183
[4] 邹炜, 孙玉臣. 水下地形匹配辅助导航技术研究[J]. 舰船电子工程, 2017, 37(8): 5–10
[5] WADHAMS P. The use of autonomous underwater vehicles to map the variability of under-ice topography[J]. Ocean Dynamics, 2012, 62(3): 439–447
[6] 张静远, 谌剑, 李恒, 等. 水下地形辅助导航技术的研究与应用进展[J]. 国防科技大学学报, 2015, 37(3): 128–135
[7] RAMESH R, JYOTHI V B N, VEDACHALAM N, et al. Development and performance validation of a navigation system for an underwater vehicle[J]. J. Navig., 2016, 69: 1097–1113
[8] 朱华勇, 沈林成, 常文森. 基于地形差分矩的TERCOM地图性能估计[J]. 国防科技大学学报, 2000, 22(4): 98–101
[9] YOO Y M, CHAN G P. Improvement of terrain referenced navigation using a point mass filter with grid adaptation[J]. Int J. Control Autom. Syst., 2015, 13(5): 1173–1181
[10] MEDUNA D, ROCK S, MCEWEN R. AUV terrain relative navigation using coarse maps[C]//Proceedings of the 2009 Unmanned Untethered Submersible Technology Conference. University of New Hampshire, Durham, 2009: 1-11.
[11] 刘洪, 高永琪, 谌剑. 基于PMF和TERCOM组合算法的水下地形匹配技术[J]. 鱼雷技术, 2012, 20(6): 437–442
[12] 王可东, 杨勇. 地形辅助导航匹配误差研究[J]. 宇航学报, 2008, 29(6): 1809–1813
[13] ALLOTTA B, CAITI A, COSTANZI R, et al. A new AUV navigation system exploiting unscented Kalman filter[J]. Ocean Eng., 2016, 113: 121–132
[14] KIM T, KIM J, BYUN S W. A comparison of nonlinear filter algorithms for terrain-referenced underwater navigation[J]. Int. J. Control Autom. Syst., 2018, 16: 2977–2989
[15] NIEDFELDT P, BEARD R. Convergence and complexity analysis of recursive-RANSAC: A new multiple target tracking algorithm[J]. IEEE Trans. Autom. Control, 2016, 61: 456–461