为了研究不同工况对有限长圆柱绕流升阻力系数及尾流场的影响规律,采用CFD与实验相结合的方法,对三维有限长圆柱在不同长径比和雷诺数工况下的流动进行了模拟和实验验证。结果表明,在长径比$AR\leqslant 3 $时,有限长圆柱的阻力系数几乎不受长径比的影响,但随雷诺数的增加有一个逐渐减小的趋势。对流场的分析发现,圆柱自由端的存在使流动具有更明显的三维特性,自由端的“下洗”作用会绕过自由端冲击圆柱后方的漩涡脱落,导致阻力系数小于无限长圆柱。在长径比$AR\geqslant 6 $时,漩涡在圆柱的中下部周期性出现,并且几乎与圆柱平行;在圆柱的中上部,呈现出一定的角度。本文研究结果可为海工结构设计提供一定的数据参考。
In order to study the influence of different working conditions on the drag coefficient and wake field around a finite-length cylinder, CFD and experiments were used to simulate and verify the flow of a three-dimensional finite-length cylinder under different aspect ratio and Re number conditions in this paper. Both results show that, when the critical aspect ratio is over 3, the drag coefficient of a finite-length cylinder remains basically stable under these conditions and almost independent of the aspect ratio. But it tends to decrease with the increase of Reynolds number. Numerical analysis of the flow field reveals that the existence of the free end of the cylinder makes the flow have a more obvious three-dimensional characteristic. The "downwash" will bypass the free end impacting the vortex behind the cylinder, resulting in the drag coefficient less than that of an infinite cylinder. When the aspect ratio $AR\geqslant 6 $, the vortex appears periodically in the middle and lower part of the cylinder and is almost parallel to the cylinder. ; in the middle and upper part of the cylinder, it presents a certain angle. The above results can provide a richer data reference for the design of related offshore structures.
2021,43(6): 19-24 收稿日期:2020-06-01
DOI:10.3404/j.issn.1672-7649.2021.06.004
分类号:U664
基金项目:山东省科技发展计划项目(2013GGA10065);国家青年科学基金资助项目(51503051)
作者简介:梁圣召(1993-),男,硕士研究生,研究方向为有限长圆柱及旋转圆柱流固耦合分析及实验验证
参考文献:
[1] OKAMOTO, T., YAGITA, M. The experimental investigation on the flow past a circular cylinder of finite length placed normal to the plane surface in a uniform stream[J]. Bulletin of the JSME, 1973, 16: 805–814
[2] AKILLI H, ROCKWELL D. Vortex formation from a cylinder in shallow water[J]. Physics of Fluids, 2002, 14: 2957–2967
[3] CHAPLIN J. R, TEIGEN P Steady flow past a vertical surface-piercing circular cylinder[J]. Journal of Fluids and Structures, 2003, 18: 271–285
[4] 张荣誉. 有自由液面的圆柱结构泄涡抑制方法研究[D]. 黑龙江: 哈尔滨工程大学, 2018.
ZHANG R Y. Study on the method to reduce vortex of cylindrical structure with free surface[D]. Heilongjiang: Harbin Engineering University, 2018.
[5] LEE, T., LIN, C. H. L., FRIEHE, C. A. Large-eddy simulation of air flow around a wall-mounted circular cylinder and a tripod tower[J]. J. Turbul, 2007, 8(29): 1–28
[6] AFGAN, I., MOULINEC, C. H., PROSSER, R., et al Large-eddy simulation of turbulent flow for wall-mounted cantilever cylinders of aspect ratios 6 and 10[J]. Int. J. Heat Fluid Flow, 2007, 28: 561–574
[7] Rosetti G.F., Vaz G., Hoekstra M., et al. CFD calculations for free–surface-piercing low aspect ratio circular cylinder with solution verification and comparison with experiments[C]//Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, June 9-14, 2013, Nantes, France.
[8] BENITZ M. A, CARLSON D. W, SEYED-AGHAZADEH B, et al. CFD simulations and experimental measurements of flow past free-surface piercing, finite length cylinders with varying aspect ratios[J]. Computers & Fluids, 2016, 136: 247–259
[9] 谢龙汉, 赵新宇, 张炯明. ANSYS CFX流体分析及仿真[M]. 北京: 电子工业出版社, 2012: 8-14.
[10] Sakamoto, H., Arie, M. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1983, 126: 147–165
[11] 王晓聪. 三维有限长圆柱绕流机理及减阻研究[D]. 黑龙江: 哈尔滨工业大学, 2018.
WANG X C. Study on the mechanism and force reduction method for 3-d flow around a circular cylinder of finite length[D]. Heilongjiang Harbin Institute of Technology, 2018.
[12] Fröhlich, J., Rodi, W. LES of the flow around a circular cylinder of finite height[J]. Int. J. Heat Fluid Flow, 2004, 25: 537–548
[13] Gonçalves R.T., Franzini G.R., Rosetti G.F., et al. Flow around circular cylinders with very low aspect ratio[J]. Journal of Fluids and Structures, 2015, 54: 122–141