为了分析油膜刚度随轴颈转速和润滑剂粘度的变化规律,进而研究船舶支撑系统耦合刚度对轴系振动的影响。以某大型集装箱船轴系为研究对象,通过求解油膜刚度、船体刚度,得到耦合刚度,进而研究耦合刚度对轴系回旋振动的影响。结果表明:对于同一阶次的固有频率,增加支撑系统耦合刚度时,轴系振动的固有频率有所增加,且高阶固有频率的增加趋势更明显。系统耦合刚度一定时,离激励源越近的地方共振幅值越大;对于同一节点而言,在一定范围内增加刚度可以使轴系工作频率有效避开共振频率,进而降低共振幅值,使幅值变化趋于稳定。刚度值增加对于船体减振具有一定的意义。
In order to analyze the variation of oil film stiffness with journal speed and lubricant viscosity, the influence of coupling stiffness of ship support system on shafting vibration is studied. Taking the shafting of a large container ship as the research object, the coupling stiffness is obtained by solving the oil film stiffness and hull stiffness, and then the influence of coupling stiffness on the whirling vibration of the shafting is studied. The results show that for the same order of natural frequency, the natural frequency of shafting vibration increases with the increase of coupling stiffness of support system, and the increasing trend of higher-order natural frequency is more obvious. When the coupling stiffness of the system is constant, the closer to the excitation source, the greater the resonance amplitude; for the same node, increasing the stiffness within a certain range can effectively avoid the resonance frequency, and then reduce the resonance amplitude, so that the amplitude change tends to be stable. It can be seen that the increase of stiffness has a certain significance for the vibration reduction of ship hull.
2021,43(6): 30-34 收稿日期:2020-08-19
DOI:10.3404/j.issn.1672-7649.2021.06.006
分类号:U664.21
基金项目:国家自然科学基金资助项目(No.51839005)
作者简介:张斌(1996-),男,硕士研究生,研究方向为船舶动力装置
参考文献:
[1] 张新宝, 王鼎. 船舶推进轴系振动对轴承承载特性的影响[J]. 舰船科学技术, 2019, 41(4): 71–75
ZHANG Xinbao, WANG Ding. Influence of ship propulsion shafting vibration on bearing load-bearing characteristics[J]. Ship Science and Technology, 2019, 41(4): 71–75
[2] 朱军超, 朱汉华, 严新平, 等. 船体变形对轴系横向振动的影响研究[J]. 船舶工程, 2013, 35(3): 34–36
[3] XIONG Y P, XING J T, PRICE W G. Interactive power flow characteristics of an ntegrated equipment-nonlinear isolator-travelling flexible ship excited by sea waves[J]. Journal of Sound and Vibration, 2005, 287(1/2): 245–276
[4] SCHIFFER W. Advanced methods for static and dynamic shafting calculations[J]. Journal of the Marine Engineering Society in Japan, 2007, 41: 115–122
[5] LEPE F, MORA D, RODRÍGUEZ R. Finite element analysis of a bending moment formulation for the vibration problem of a non-homogeneous timoshenko beam[J]. Journal of Scientific Computing, 2015: 1–24
[6] MURAWSKI L. Axial vibrations of a propulsion system taking into account the couplings and the boundary conditions[J]. Journal of marine science and technology, 2004(9): 171–181
[7] ZHANG Z, CHEN F, ZHANG Z, et al. Vibration analysis of non-uniform Timoshenko beams coupled with flexible attachments and multiple discontinuities[J]. International Journal of Mechanical Sciences, 2014, 80: 131–143
[8] 王剑, 张振果, 华宏. 考虑质量偏心Timoshenko梁的弯-纵耦合固有振动特性研[J]. 振动与冲击, 2015(19): 8–12
[9] FONTE M, DUARTE P, ANES V, et al. On the assessment of fatigue life of marine diesel engine crankshafts[J]. Engineering Failure Analysis, 2015, 56: 51–57
[10] YIGIT A. Analysis of fully coupled torsional and lateral vibrations of unbalanced rotors subject to axial loads[J]. Kuwait Journal of Science & Engineering, 2008, 35(2B): 143–169
[11] LEE H, SONG J S, CHA S J, et al. Dynamic response of coupled shaft torsion and blade bending in rotor blade system[J]. Journal of MechanicalScience & Technology, 2013, 27(9): 2585–2597
[12] 杨家友。水润滑轴承液膜刚度特性及对轴系振动的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[13] KHANLO H M, GHAYOUR M, ZIAEI-RAD S. The effects of lateral–torsional coupling on t henonlineardynamic behavior of a rotating continuous flexible shaft–disk system with rub–impact[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(6): 1524–1538
[14] 姜其力. 基于船体刚度变化的轴系振动研究[D]. 武汉: 武汉理工大学, 2012.
[15] 任泓吉, 王大伟, 朱汉华, 等. 轴系法兰连接螺栓数量对振动的影响[J]. 船舶工程, 2020, 42(3): 70–71
REN Hong-ji, WANG Da-wei, ZHU Han-hua, et al. The influence of the number of flange connecting bolts of shafting on vibration[J]. Ship Engineering, 2020, 42(3): 70–71