基于iSIGHT优化设计平台,结合有限元分析软件MSC.Patran/Nastran对某深海载人平台总装台架进行重量优化。优化过程采用自适应模拟退火算法(ASA),在满足结构屈服强度的前提下,给出重量最小的优化方案。结果表明,优化方案满足结构屈服强度要求,且重量较原有方案明显减少。该方法可以推广到其他结构位置的优化设计中,对深海载人平台的进一步设计具有一定的参考价值。
Based on the iSIGHT optimization design platform, combined with the finite element analysis software MSC.Patran/Nastran, the weight of a deep-sea manned platform assembly bench was optimized. The optimization process adopts adaptive simulated annealing method (ASA), and on the premise of satisfying the yield strength of the structure, the optimization scheme with the smallest weight is given. The results show that the optimized scheme meets the structural yield strength requirements, and the weight is significantly reduced compared to the original scheme. This method can be extended to the design of other structural locations and has certain reference value for the further design of deep-sea manned platform.
2021,43(6): 41-45 收稿日期:2020-06-17
DOI:10.3404/j.issn.1672-7649.2021.06.008
分类号:U661.44
作者简介:刘一夫(1993-),男,硕士,助理工程师,研究方向为载人潜器总体设计
参考文献:
[1] 王东升, 曲文鑫, 刘帅, 等. 全海深载人潜水器总装台架屈服强度分析[J]. 内蒙古科技, 2019, 38(7): 109–111
WANG D S, QU W X, LIU S, etal. Yield strength analysis of the assembly bench for deep-sea manned submersibles[J]. Inner Mongolia Science and Technology Magazine, 2019, 38(7): 109–111
[2] 王江峰, 伍贻兆, 等. 进化算法与确定性算法在优化控制问题中的收敛性对比[J]. 计算力学学报, 2004, 21(3): 349–355
WANG J F, WU Y Z, etal. Comparison of convergence between evolutional algorithms and deterministic algorithms for optimal control problem[J]. Chinese Journal of Computational Mechanics, 2004, 21(3): 349–355
[3] 王一伟, 钟星立, 杜特专. 翼型多目标气动优化设计方法[J]. 计算力学学报, 2007, 24(1): 98–102
WANG Y W, ZHONG X L, DU T Z. Multi-objective optimization of airfoils[J]. Chinese Journal of Computational Mechanics, 2007, 24(1): 98–102
[4] 刘峰. 载人潜器总体设计优化方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
Liu F. Research on general design optimization method of human occupied vehicle[D]. Harbin: Harbin Engineering University, 2014.
[5] INGBER L. Adaptive simulated annealing(ASA): lessons learned[J]. Journal of Control and Cybernetics, 1996, 25(1): 33–54
[6] CHEN S, LUK B L. Adaptive simulated annealing for optimization in signal processing applications[J]. Signal Processing, 1999, 79(1): 117–128
[7] SHIC Z, ZENG N, ZHANG M, ETAL. Adaptive simulated annealing algorithm for the fiberbragg grating distributed straining sensing[J]. Optics Communications, 2003, 226, (1–6): 167–173
[8] JEONG IK, LEE J J. Adapted simulated annealing genetic algorithm for system identification[J]. Engineering Applications of Artificial Intelligence, 1996, 9(5): 523–532
[9] 张德富, 顾卫刚, 等. 一种解旅行商问题的并行模拟退火算法[J]. 计算机研究与发展, 1995, 32(2): l–4
ZHANG D F, GU W G, ETAL. A parallel simulated annealing algorithm for solving Travelling Salesman Problem (TSP)[J]. Computer Research and Development, 1995, 32(2): l–4
[10] METROPOLIS N, ROSENBLUTH A W, ETAL. Equation of calculations by fast computing[J]. Journal of Chemical Physis, 1953, 21(4): 1087–1092
[11] 胡光兴, 王庆. 载人潜器非耐压结构多目标优化设计[J]. 舰船科学技术, 2016, 38(4): 99–104
HU guang-Xing, WANG Qing. Multi-objective optime design of the non-pressure hullin manned submersible[J]. Ship Science and Tecnology, 2016, 38(4): 99–104