某型低工况改进型船用燃气轮机在首次整机试验时,在部分工况出现低压压气机喘振裕度不足10%的情况。为了使低压压气机以及整机工作在安全范围内,有必要对高低压压气机压比进行重新调配。为了改善低压压气机运行工作线,提出了通过仿真分析改变涡轮喉道面积来调整高低压压气机压比分配的研究方法。本文基于热力循环分析法,建立低工况下燃气发生器数学物理模型、部件匹配模型,以及喷管热力学模型,借助Matlab/Simulink仿真平台建立改进涡轮喉道面积燃气发生器仿真模型。根据仿真结果确定增大低压涡轮喉道面积5%的调整方案,并将该方案应用于后续燃气发生器试验。试验结果表明,通过喉道面积调整可以有效的调整燃气轮机燃气发生器高低压压气机压比分配,增大低压压气机喘振裕度,保证燃气轮机在全工况范围内安全、稳态、高效的运行,为下一阶段低工况改进型整机性能试验提供了理论和试验的双重支撑。
The surge margin of low pressure compressor is less than 10% under part condition in the first test of a low condition modified marine gas turbine. In order to make the compressor and the whole machine work in a safe range, it is necessary to readjust the high and low pressure compressor pressure ratio. In order to improve the operation line of low-pressure compressor, this paper presents a research method to adjust the pressure ratio distribution of high-pressure and low-pressure compressor by changing the area of turbine throat through simulation analysis. In this paper, based on the thermal cycle analysis method, the mathematical physical model, the component matching model and the nozzle thermodynamic model of the gas generator under low operating conditions are established, and the simulation model of the improved turbine throat area gas generator is established with the help of Matlab/Simulink simulation platform. According to the simulation results, the adjustment scheme of increasing the throat area of low pressure turbine by 5% is determined, and the scheme is applied to the subsequent gas generator test. The test results show that the throat area adjustment can effectively adjust the pressure ratio distribution of the high and low pressure compressor of the gas turbine generator, increase the surge margin of the low pressure compressor, and ensure the safe, stable and efficient operation of the gas turbine in the whole operating range, which provides the double support of theory and test for the performance test of the improved low operating range in the next stage.
2021,43(6): 116-121 收稿日期:2020-08-09
DOI:10.3404/j.issn.1672-7649.2021.06.022
分类号:TK447
基金项目:国家科技重大专项资助项目(2017-I-0011-0012)
作者简介:刘睿(1992-),男,硕士,工程师,研究方向为船用燃气轮机总体性能计算及整机试验
参考文献:
[1] 刘小方, 蒋磊, 司品顺. 某型舰用三轴燃气轮机性能仿真研究[J]. 江苏船舶, 2012(3): 30–32+38
LIU Xiao-fang, JIANG Lei, SI Pin-shun. Performance simulation of a certain type of marine three shaft gas turbine[J]. Jiangsu Ship, 2012(3): 30–32+38
[2] 闻雪友, 钱振岳. 涡轮导向器面积调整对燃气轮机性能的影响[J]. 舰船科学技术, 1981(12): 76–90+95
WEN Xue-you, QIAN Zhen-yue. Effect of turbine guide area adjustment on gas turbine performance[J]. Ship Science and Technology, 1981(12): 76–90+95
[3] 王华青, 陈矛章. 发动机的涡轮导向器面积、喷口直径等匹配参数调整的计算方法研究和应用[J]. 航空动力学报, 2002: 2–6
WANG Hua-qing, CHEN Mao-zhang. A study and application of calculation method for adjusting the matching parameters of turbine nozzle area and engine nozzle radius[J]. Journal of Aeronautical power, 2002: 2–6
[4] 栾永军, 孙鹏, 李东明, 等. 发电用燃气轮机动态性能仿真[J]. 舰船科学技术, 2012(4): 53–58
LUAN Yong-jun, SUN Peng, LI Dong-ming, et al. Research on transient simulation of gas turrbine generator set[J]. Ship Science and Technology, 2012(4): 53–58
[5] 司品顺. 基于模块化建模方法的舰用燃气轮机装置的仿真技术研究[D]. 镇江: 江苏科技大学, 2011.
[6] 任志彬, 孟光, 王廷兴, 等. 基于Modelica和Dymola的航空发动机燃气发生器的建模与性能仿真[J]. 航空发动机, 2006, 32(4): 36–39
REN Zhi-bin, MENG Guang, WANG Yan-xing, et al. Modeling and performance simulation for gas generator of aeroengine based on modelica and dymola[J]. Aircraft Engine, 2006, 32(4): 36–39
[7] 沈维道. 工程热力学(第四版)[M]. 北京: 高等教育出版社, 2007.
[8] 晏至辉. 超燃冲压发动机尾喷管仿真和试验研究[D]. 长沙: 国防科学技术大学, 2005.
[9] 周文祥, 黄金泉, 周人治. 拉瓦尔喷管计算模型的改进及其整机仿真验证[J]. 航空动力学报, 2009(11): 211–216
ZHOU Wen-xiang, HUANG Jin-quan, ZHOU Ren-zhi. Improvement of Laval nozzle calculation model and simulative verification in aero-engine performance calculation[J]. Journal of Aeronautical Power, 2009(11): 211–216