无人艇作为一种高度集成的海洋装备,全船位姿状态感知成为无人艇智能感知与位姿补偿的迫切需求。面向全船任意位置点的姿态估计需求,本文设计基于数字孪生的无人艇虚实结合三维交互系统。该系统主要包括物理空间实体无人艇、信息空间三维可视化交互软件以及物理空间与信息空间的交互接口3部分。结合湖试验证,该系统实现了无人艇实时状态从物理空间向信息空间的真实映射。利用虚实结合跨空间数据融合方法,该系统实现了无人艇船体任意位置的实时速度观测,为无人艇局部位置点设备位姿变化补偿提供了参考输入。
Unmanned Surface Vehicle (USV) is an important force in the development of marine science and technology. As a highly integrated marine equipment, full ship position and attitude state perception becomes an urgent demand for USV’s intelligent sensing and pose compensation. To meet the requirement of attitude estimation for any position of the USV, this paper designs the USV’s virtual reality fusion three-dimensional interactive system based on digital twin. The system mainly includes three parts: USV entity in physical space, 3D visualization interactive software in information space, and interaction interface between physical space and information space. Based on verification in lake test, the system realized mapping USV’s real-time state from physical space to information space. Using the method of virtual and real data fusion, the system realized the real-time velocity observation of any position point of hull for the USV, and then provided the reference input of the pose compensation for the USV’s equipment which installed on the observation point.
2021,43(6): 151-156 收稿日期:2020-07-16
DOI:10.3404/j.issn.1672-7649.2021.06.029
分类号:U674
基金项目:国家自然科学基金资助项目(51809100);中央高校基本科研业务费专项资金资助项目(2018KFYYXJJ015)
作者简介:杨少龙(1988-),男,博士,讲师,研究方向为智能动力装置设计及控制理论、无人艇航线规划、数字孪生等
参考文献:
[1] 司帆, 谷雨, 赵剡, 等. 基于相对惯性导航的机载导弹二次传递对准[J]. 航空兵器, 2017(6): 41–48
[2] 王林, 吴文启, 魏国, 等. 双航海惯导联合旋转调制协同定位与误差参数估计[J]. 中国惯性技术学报, 2017, 25(5): 599–605
[3] 刘镇波, 李四海, 王珏, 等. 基于分布式IMU的相对姿态估计方法[J]. 弹箭与制导学报, 2014, 34(5): 21–25
[4] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1–18
TAO F, LIU W, LIU J, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1–18
[5] 苗田, 张旭, 熊辉, 等. 数字孪生技术在产品生命周期中的应用与展望[J]. 计算机集成制造系统, 2019, 25(6): 1546–1558
MIAO T, ZHANG X, XIONG H, et al. Applications and expectation of digital twin in product lifecycle[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1546–1558
[6] 刘大同, 郭凯, 王本宽, 等. 数字孪生技术综述与展望[J]. 仪器仪表学报, 2018, 39(11): 1–10
[7] GRIEVES M, VICKERS J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[J]. Transdisciplinary Perspectives on Complex Systems, 2017: 85–113
[8] GRIEVES M. Digital twin: Manufacturing excellence through virtual factory replication[J]. White paper, 2014: 1–7
[9] GRIEVES M. Virtually perfect: Driving innovative and lean products through product lifecycle management[M]. Space Coast Press, 2011.
[10] 李凯, 钱浩, 龚梦瑶, 等. 基于数字孪生技术的数字化舰船及其应用探索[J]. 船舶, 2018, 29(6): 101–108
[11] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1–18
[12] LorenzMeier. PX4/Firmware at v1.8. 0[EB/OL]. (2018-06-19) [2019-03-28]. https://github.com/PX4/Firmware/tree/v1.8.0.
[13] 中国船级社. 无人水面艇检验指南[S]. 北京: 中国船级社, 2018.1.
China Classification Society. Survey guide for unmanned surface vehicles[S]. Beijing: China Classification Society, 2018.1.