船体板在波浪载荷下会受到交变拉/压作用,因此必须考虑疲劳对船体板剩余寿命的影响,尤其是对含点腐蚀船体板剩余寿命的影响。本文对单点腐蚀船体板剩余疲劳寿命进行了数值计算,结果表明:使用二次单元对含蚀坑船体板应力集中系数的计算误差不超过10%,而使用线性单元误差可达40%;蚀坑直径对单点腐蚀船体板疲劳寿命的影响不大,而船体板剩余疲劳寿命随蚀坑深度的增大而迅速减小。可见,对于点腐蚀钢板的应力集中计算,使用而二次单元比使用线性单元更准确;蚀坑深度对单点腐蚀船体板剩余疲劳寿命的影响比蚀坑直径的影响更为显著。
Hull plates will be subjected to alternating tension/compression under wave load, so the influence of fatigue on the residual life of the hull plate, especially on the residual life of the hull plate with pitting corrosion, must be considered. In this paper, the residual fatigue life of single point corrosion hull plate is calculated. The results show that the error of stress concentration coefficient of hull plate with corrosion pit is less than 10% and the error of linear element is up to 40%. The diameter of corrosion pit has little effect on the fatigue life of single point corrosion hull plate, but the residual fatigue life of hull plate decreases rapidly with the increase of the depth of corrosion pit. It can be seen that for the stress concentration calculation of point corrosion steel plate, using quadratic element is more accurate than the linear element, and the effect of pit depth on the residual fatigue life of single point corrosion hull plate is more significant than that of pit diameter.
2021,43(7): 5-8 收稿日期:2020-06-10
DOI:10.3404/j.issn.1672-7649.2021.07.002
分类号:U661.43
作者简介:王慧婷(1990-),女,硕士研究生,主要从事船体结构的研究
参考文献:
[1] ZHANG Yue-lin, PENG Fei, MU Jin-lei. The application of grey system theory on the corrosion behavior of steel in seawater[J]. J. Inst. Eng. India Ser. C.DOI:10.1007/s40032-018-0498-7.
[2] DNV, Allowable thickness diminution for hull structure, in:No. 72.1, Hovik, Norway, 2013.
[3] 张岳林, 彭飞, 牟金磊. 单点腐蚀参数对船体板应力集中影响研究[J]. 船舶工程, 2015, 37(3):66-69
[4] 张岳林, 彭飞, 牟金磊. 双点腐蚀对船体板应力集中影响研究[J]. 舰船科学技术, 2015, 37(12):23-26
[5] 王燕舞, 崔维成. 考虑腐蚀影响的船舶结构可靠性研究现状与展望[J]. 船舶力学, 2007, 11(2):307-320
[6] MOHAMMAD R K, MOHAMMAD M R, ZORAREH H M E N. Strength of steel plates with both-sides randomly distributed with corrosion wastage under uniaxial compression[J]. Thin-Walled Structures, 2011, 49:325-342
[7] MOHAMMAD R K, ZORAREH H M E N. Analytical simulation of nonlinear elastic-plastic average stress-average strain relationships for un-corroded/both-sides randomly corroded steel plates under uniaxial compression[J]. Thin-Walled Structures, 2015, 86:132-141
[8] SAAD-ELDEEN S., GARBATOV Y., GUEDES SOARES C. Experimental assessment of the ultimate strength of a box girder subjected to severe corrosion[J]. Marine Structures, 2011, 24:338-357
[9] JIANG Xiaoli, GUEDES SOARES C. Ultimate capacity of rectangular plates with partial depth pits under uniaxial loads[J]. Marine Structures, 2012, 26:27-41
[10] TEIXEIRA A. P., IVANOV L. D., GUEDES SOARES C. Assessment of characteristic values of the ultimate strength of corroded steel plates with initial imperfections[J]. Engineering Structures, 2013, 56:517-527
[11] SAAD-ELDEEN S., GARBATOV Y., GUEDES SOARES C. Effect of corrosion severity on the ultimate strength of a steel box girder[J]. Engineering Structures, 2013, 49:560-571
[12] ZAYED A., GARBATOV Y., GUEDES SOARES C. Reliability of ship hulls subjected to corrosion and maintenance[J]. Structural Safety, 2013, 43:1-11
[13] SILVA J. E., GARBATOV Y., GUEDES SOARES C. Ultimate strength assessment of rectangular steel plates subjected to a random localised corrosion degradation[J]. Engineering Structures, 2013, 52:295-305
[14] SILVA J. E., GARBATOV Y., GUEDES SOARES C. Reliability assessment of a steel plate subjected to distributed and localized corrosion wastage[J]. Engineering Structures, 2014, 59:13-20
[15] SAAD-ELDEEN S., GARBATOV Y., GUEDES SOARES C. Experimental strength analysis of steel plates with a large circular opening accounting for corrosion degradation and cracks subjected to compressive load along the short edges[J]. Marine Structures, 2016, 48:52-67
[16] SHI Xing hua, ZHANG Jing, GUEDES SOARES C. Numerical assessment of experiments on the ultimate strength of stiffened panels with pitting corrosion under compression[J]. Thin-Walled Structures, 2018, 133:52-70
[17] GARBATOV Y., GUEDES SOARES C., PARUNOV J., et al Tensile strength assessment of corroded small scale specimens[J]. Corrosion Science, 2014, 85:296-303
[18] JEOM K P, JAE M L, MAN J K. Ultimate shear strength of plate elements with pit corrosion wastage[J]. Thin-Walled Structures, 2004, 42:1161-1176
[19] JIANG Xiaoli, GUEDES SOARES C. A closed form formula to predict the ultimate capacity of pitted mild steel plate under biaxial compression[J]. Thin-Walled Structures, 2012, 59:27-34
[20] 张岩, 黄一. 点蚀损伤船体板格单轴压缩极限强度[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(4):429-436
[21] ZHANG Yan, HUANG Yi, WEI Yong. Ultimate strength experiment of hull structural plate with pitting corrosion damage under unaxial compression[J]. Ocean Engineering, 2017, 130:103-114
[22] ZHANG Yan, HUANG Yi, MENG Fanlei. Ultimate strength of hull structural stiffened plate with pitting corrosion damage under unaxial compression[J]. Marine Structures, 2017, 56:117-136
[23] HUANG Yi, ZHANG Yan, LIU Gang, et al. Ultimate strength assessment of hull structural plate with pitting corrosion damnification under biaxial compression[J]. Ocean Engineering, 2010, 37:1503-1512
[24] ZHANG Yan, HUANG Yi, ZHANG Qi, et al. Ultimate strength of hull structural plate with pitting corrosion damnification under combined loading[J]. Ocean Engineering, 2016, 116:273-285