船舶快速性是影响航运经济的关键因素之一,以某双体船为对象,设计一种阻力预报与优化方案并成功降低其阻力:运用数值模拟技术,结合Lackenby变形方法,改进船体型线,并进一步通过调整片体间距优化阻力性能。结果表明:优化后的船型具有良好的阻力性能,与原船型相比,在设计工况Fr=0.572下,剩余阻力系数可减少13%;片体间距优化后,船体总阻力进一步明显降低。基于以上结果,本文提出的预报方法及优化方案能够有效地用于高速双体船性能预报及优化设计,可以为相关研究提供技术支持。
The rapidity of ships is one of the key factors affecting the shipping economics. A catamaran is studied to design a resistance prediction and optimization plan and reduce its resistance successfully: using numerical simulation technology combined with Lackenby deformation method to transform the hull profile, and further optimizing the resistance performance by adjusting the spacing of the slices. The results show that the optimized ship possesses a good resistance performance. Compared with the parent ship, the total resistance coefficient can be reduced by 13% under the design condition, Fr=0.572. After the optimization of the hull separation, the total resistance coefficient is further significantly reduced. Based on the above results, the prediction method and optimization scheme proposed in this paper can be effectively used for the performance prediction and optimization design of high-speed catamarans and provide technical support for the related researches.
2021,43(7): 9-13 收稿日期:2020-12-28
DOI:10.3404/j.issn.1672-7649.2021.07.003
分类号:U661.31;U674.951
基金项目:浙江省新苗人才计划(2020R405093);宁波市科技局公益项目(2019C10091)
作者简介:袁文鑫(1995-),男,硕士研究生,主要研究方向为船舶水动力性能研究
参考文献:
[1] 王骏. 高性能船舶研究现状及发展趋势[J]. 船舶物资与市场, 2020(8):7-9
WANG J. Research status and development trend of high performance ship[J]. Marine Equipment/Materials & Marketing, 2020(8):7-9
[2] 邓芳, 邓魏彬. 双体船阻力性能计算及船型设计优化[J]. 青岛科技大学学报(自然科学版), 2015, 36(1):72-76
DENG F, DENG W B. Resistance calculation and hull design and optimization of catamaran[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2015, 36(1):72-76
[3] MORAES H B, VASCONCELLOS J M, LATORRE R G. Wave resistance for high-speed catamarans[J]. Ocean Engineering, 2004, 31:2253-2282
[4] 杜友威, 李彪, 周新院. 基于阻力分析的穿浪双体船船型设计及优化[J]. 舰船科学技术, 2019, 41(13):31-34+44
DU Y W, LI B, ZHOU X Y. Ship design and optimization of wave-piercing catamaran based on resistance performance analysis[J]. Ship Science and Technology, 2019, 41(13):31-34+44
[5] 陈京普, 朱德祥, 何术龙. 双体船/三体船兴波阻力数值预报方法研究[J]. 船舶力学, 2006(2):23-29
CHEN J P, ZHU D X, HE S L. Research on numerical prediction method for wave-making resistance of catamaran/trimaran[J]. Journal of Ship Mechanics, 2006(2):23-29
[6] 李广年, 赵连恩, 陈庆任, 等. 非对称双体船兴波问题与侧体布局优化分析[J]. 中国造船, 2013, 54(4):55-62
LI G N, ZHAO L E, CHEN Q R, et al. Wave-making problem and optimal solution of piece hull arrangement for asymmetric catamaran[J]. Shipbuilding of China, 2013, 54(4):55-62
[7] LI H J, PUTR A A M F, SUN K, et al. Boat trial validation and resistance prediction of a 36-foot hydrofoil catamarans using CFD[J]. Journal of Ship Mechanics, 2020, 24(6):740-753
[8] 马健, 张再夫, 李惠敏. 穿浪双体船剩余阻力影响因素分析及总阻力预报方法[J]. 船舶力学, 2011, 15(Z1):32-39
MA J, ZHANG Z F, LI H M. Influencing factors of residual resistance and a prediction method of total resistance about wave-piercing catamaran[J]. Journal of Ship Mechanics, 2011, 15(Z1):32-39
[9] COUSER P, WELLICOME J F, MOLLAND A F. An improved method for the theoretical prediction of the wave resistance of transom-stern hulls a slender body approach[J]. International Shipbuilding Progress, 1998, 45(444):1-18
[10] 王硕, 苏玉民, 庞永杰, 等. 高速滑行艇CFD精度研究[J]. 船舶力学, 2013, 17(10):1107-1114
WANG S, SU Y M, PANG Y J, et al. Study on the accuracy in the hydrodynamic prediction of high-speed planning crafts of CFD method[J]. Journal of Ship Mechanics, 2013, 17(10):1107-1114