随着战争形势的无人化、多样化和跨域化发展,水下无人航行器作为各军事强国抢占水下作战域和海洋不对称作战优势的主要抓手,在未来战争中发挥着越来越重要的作用。由于海洋非结构化环境的复杂性,水下无人航行器在执行任务过程中,需能够在无人干预情况下进行系列操作和任务决策。本文针对水下无人航行器局部路径规划,提出基于速度矢量判断的改进人工势场法的避障航路规划策略,通过增加障碍物斥力场范围,强化目标点附近的引力场,优化障碍物斥力系数,并通过速度矢量判断旋转方向,使得水下无人航行器能够结合环境感知信息进行路径实时调整,最终能够达到安全快速避障。最后结合航行器流体动力与运动控制一体化仿真模型进行仿真分析,验证提出算法的有效性。
With the unmanned, diversified and trans-regional development of the war situation, the underwater unmanned aerial vehicles (UUV) are the main grasp for the military powers to seize the advantages of the underwater battle area and the asymmetric warfare in the sea, play an increasingly important role in future wars. Due to the complexity of the ocean unstructured environment, the AUV needs to be able to perform a series of operations and missiondecisions without human intervention. Aiming at the local path planning of unmanned underwater vehicle, this paper presents an obstacle avoidance route planning strategy based on the improved artificial potential field method. By increasing the range of obstacle repulsion field, strengthening the gravitational field near the target point, optimizing the repulsion coefficient of obstacles, and judging the rotation direction by velocity vector, the AUV can carry out the route combining with environmental perception information. And then the effectiveness of the proposed algorithm is verified by the simulation analysis of the vehicle hydrodynamic and motion control integrated model.
2021,43(7): 54-57 收稿日期:2021-03-20
DOI:10.3404/j.issn.1672-7649.2021.07.011
分类号:TP273
作者简介:郭凯红(1972-),男,高级工程师,主要从事武器装备建设研究
参考文献:
[1] ANAVATTI S. G., FRANCIS S. L., GARRATT M., 自主车辆路径规划模块的现状与挑战[C]//2015先进机电一体化、智能制造和工业自动化国际会议(ICAMIMIA), 泗水, 2015,205-214.
[2] KHATIB O., 机械手和移动机器人的实时避障[C]//1985年IEEE机器人与自动化国际会议, 美国密苏里州圣路易斯,1985:500-505.
[3] S. S. GE, Y. J. CUI. 一种新的用于移动机器人路径规划的势场函数[J], 机器人与自动化学报, 2000,16,(5), 615−620.
S. S. GE, Y. J. CUI. 一种新的用于移动机器人路径规划的势场函数[J], 机器人与自动化学报, 2000,16(5), 615−620.
[4] H. ZHU, J. WANG, J. LI,,移动机器人路径规划的一种新的势场方法[C]//2013年第25届中国决策与控制会议 (CCDC), 贵阳, 2013:2811−2814.
[5] X. LIN, Z. WANG, X. CHEN. 基于决策树的改进人工势场法路径规划[C]//2020年第27届圣彼得堡综合导航系统国际会议 (ICINS), 俄罗斯圣彼得堡, 2020:1−5.