为实现对振动主动控制算法的快速有效验证,搭建双层隔振系统实验平台,基于快速原型控制技术,设计自适应控制策略,并以Speedgoat实时控制器为载体,开展振动主动控制样机验证研究。次级通道辨识、扫频以及双频激励实验表明,辨识模型精度能够满足主动控制需要,所设计算法能够有效实现主动控制,快速原型控制技术能够高效地将理论研究和台架实验结合起来,为样机验证提供高效便捷的开发手段,具有重要的应用价值。
In order to achieve rapid and effective verification of the active vibration control algorithm, an experimental platform for the double-layer vibration isolation system was built. Based on the rapid prototyping control technology, an adaptive control strategy was also designed, and the prototype of active vibration control was verified with Speedgoat real-time controller as the carrier. Secondary path identification, frequency sweeping, and dual-frequency excitation experiments show that the accuracy of the identification model can meet the needs of active control, the designed algorithm can effectively realize active control, and the rapid prototyping control technology can efficiently combine theoretical research and bench experiments, it can provide an efficient and convenient development method for prototype verification and has important application value.
2021,43(8): 24-28 收稿日期:2021-03-15
DOI:10.3404/j.issn.1672-7649.2021.08.005
分类号:TB535
作者简介:张鑫(1972-),男,副教授,主要从事潜艇噪声管理方面研究
参考文献:
[1] 束立红, 胡宗成, 吕志强. 国外舰船隔振器研究进展[J]. 舰船科学技术, 2006(3): 109–112
[2] 张洪田, 李玩幽, 刘志刚. 电动式主动吸振技术研究[J]. 振动工程学报, 2001(1): 117–121
[3] HANSEN C H, SNYDER S D. Active control of noise and vibration[M]. 2012.
[4] WALROD JOHN. Sensor and actuator networks for acoustic signature monitoring and control[A]. Undersea Defence Technology 1999, France.
[5] DALEY S, JOHNSON F. A, et al A, et al. Active vibration control for marine applications[J]. Control Engineering Practice, 2004, 12(4): 465–474
[6] WINBERG M, JOHANSSON S, LAG T L. Active control of engine induced noise in a naval application[M]. Hong Kong, China, 2001.
[7] 何琳, 李彦, 杨军. 磁悬浮-气囊主被动混合隔振装置理论和实验[J]. 声学学报, 2013, 38(2): 242–249
[8] 杨铁军, 石慧, 李新辉, 等. 一种基于智能减振器的舰船机械设备主动减振系统研究[J]. 振动工程学报, 2017, 30(2): 167–176
[9] 张志谊, 王俊芳, 周建鹏, 等. 基于跟踪滤波的自适应振动控制[J]. 振动与冲击, 2009, 28(2): 64–67
[10] HANSEN C H, SCOTT D S, QIU XIAOJUN, et al. Active control of noise and vibration and vibration[M]. Boca Raton: Taylor&Francis 2013.
[11] ELLIOTT SJ, STOTHERS IM, NELSON PA. A Multiple error LMS algorithm and its application to the active control of sound and vibration[J]. IEEE Trans. ASSP, 1987, 35 (10): 1423−1434.
[12] BURDISSO R. A, FULLER C. R, SUAREZ L. E. Adaptive feedforward control of structures subjected to seismic excitation[C]//. In Proceedings of the 1993 American Control Conference, San Francisco, USA, 1993, 28: 2104−2108.
[13] TUY, FULLER C. R. Multiple reference feedforward active noise control part II: preprocessing and experimental results[J]. Journal of Sound and Vibration, 2000, 233(5): 761−774.
[14] MORGAN D R. History, applications and subsequent development of the FXLMS algorithm[J]. Signal Processing Magazine, IEEE, 2013, 30(3): 172–176
[15] 王婷, 牛振, 武飞. 基于Labview-RT系统的伺服系统快速原型平台设计[J]. 信息与电脑(理论版), 2020, 32(10): 60–62
[16] 陈亮, 郝洪涛, 倪凡凡, 等. 基于dSPACE湿式双离合变速器系统建模与仿真研究[J]. 传动技术, 2018, 32(1): 8–18
[17] 沈佳明. 基于快速原型的无人机仿真系统设计与开发[D]. 南京: 南京航空航天大学, 2019.
[18] 庞齐齐, 张丽霞, 何一超, 等. 磁流变半主动悬架控制算法验证平台[J]. 清华大学学报(自然科学版), 2019, 59(7): 567–574
[19] PAULOSRDINIZ著, 刘郁林译. 自适应滤波算法与实现[M]. 北京: 电子工业出版社, 2004.
[20] BAGESHREE PATHAK, PADMA P HIRAVE. FXLMS Algorithm for feed forward active noise cancellation[C]//. Conference Advances in Computer, Electronics and Electrical Engineering, 2012: 18−22.