基于Sesam软件研究风浪流耦合载荷下超大型海洋平台拆解船的运动特性,并重点探讨了举升臂及载荷方向的影响规律。首先,基于HydroD频域分析模块得到波浪载荷下拆解船运动特性;在此基础上,将频域分析得到的拆解船运动传递函数及附加质量等导入Sima时域分析模块,并同时考虑风和流载荷的影响,得到风浪流耦合载荷下拆解船运动特性。数值计算结果表明:安装举升臂后拆解船在波浪载荷下的横荡、横摇及首摇方向上运动幅值会显著增大;举升臂导致船体结构具有不对称性,风浪流载荷从压载箱侧加载时拆解船运动幅值相对较小,为保证作业安全性,应尽量保证载荷从压载箱侧加载。
Based on Sesam software, the motion characteristics of a dismantling ship of super large offshore platforms under wind, wave and current load are studied in the present work, and the influence of lifting arm and load direction are investigated. Firstly, the motion characteristics of the dismantling ship under wave load are predicted by the HydroD frequency domain analysis module. Then, the motion transfer function and additional mass of the dismantling ship obtained from the frequency domain analysis are imported into the Sima time domain analysis module, and the influence of wind and current loads is considered at the same time to obtain the motion characteristics of the dismantling ship under wind, wave and current load. The numerical results show that the motion amplitudes of the dismantling ship in the sway, roll and yaw directions under the wave load are significantly increased after the lifting arm is installed; the structure of the dismantling ship is asymmetric due to the lifting arm, and the movement amplitude of the dismantling ship is relatively small when the wind wave current load is loaded from the side of the ballast box. In order to ensure the operation safety, the load should be loaded from the side of the ballast box.
2021,43(8): 58-61 收稿日期:2020-08-06
DOI:10.3404/j.issn.1672-7649.2021.08.012
分类号:U674.35
基金项目:工信部高技术船舶科研项目(MC-201713-H02)
作者简介:刘永泽(1997-),男,硕士研究生,研究方向为船舶与海洋结构物强度分析
参考文献:
[1] FOWLER A M, MACREADIE P I, JONES D O B, et al. A multi-criteria decision approach to decommissioning of offshore oil and gas infrastructure[J]. Ocean & Coastal Management, 2014, 87(jan.): 20-29. VIKING Life-Saving Equipment Norge AS. Installation, Operation and Maintenance Manual, IOM[M]. 2006: 25−31.
[2] 李巍, 胡智焕, 李欣, 等. 新型双船起重拆除平台试验研究[J]. 海洋工程, 2020(1): 30–41
[3] HU Z, LI X, ZHAO W, et al. Nonlinear dynamics and impact load in float-over installation[J]. Applied Ocean Research, 2017, 65: 60–78
[4] 李文魁, 张博, 田蔚风. 一种波浪中的船舶动力定位运动建模方法研究[J]. 仪器仪表学报, 2007(06): 1051–1054
[5] 黄致谦, 李春, 丁勤卫, 等. 考虑到台风海况浮式风力机半潜式平台风浪流载荷动态响应及系泊性能分析[J]. 动力工程学报, 2017, 37(12): 1015–1022
[6] 翟佳伟, 唐友刚, 李焱, 等. 风浪流中涡激共振对Spar型浮式风机运动响应的影响[J]. 海洋工程, 2018, 36(04): 39–49
[7] 袁洪涛, 陈正豪, 陈刚, 等. 风浪流联合作用下油气资源开发保障平台系泊系统响应的计算分析[J]. 船海工程, 2019, 48(02): 159–162+166
[8] 孙承猛, 林海花. 风、浪、流联合作用下钻井船漂移载荷时域模拟[J]. 舰船科学技术, 2020, 42(11): 115–120
[9] 七零八所《船舶科技简明手册》编写组. 船舶科技简明手册[M]. 北京: 国防工业出版社, 1977.
[10] 范尚雍. 船舶操纵性[M]. 北京: 国防工业出版社, 1988.
[11] 杨思铭. TLP海上浮式风机在风浪流联合作用下的运动性能与锚泊系统响应研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.