为了提高水下滑翔机在洋流冲击下的横向静稳定性,以一定经济性为前提,借助数值模拟方法分析下潜及上浮2个状态下水翼后掠角及垂尾展弦比对横向静态航行性能的影响,从而优化水动力参数。结果表明,一定范围内增加水翼后掠角对水下滑翔机不同滑翔状态下的横向静稳定性均产生了积极作用,而增加垂尾展弦比对不同滑翔状态下的横向静稳定性影响具有双重性。该研究方法的提出为水下滑翔机在不同工况下航行的水动力参数设计提供了理论依据。
In order to improve the lateral static stability of underwater glider under ocean current, premised on certain gliding efficiency, numerical simulation method is used to analyze the influence of hydrofoil swept angle and vertical tail aspect-ratio on lateral static navigation performance under conditions of diving and floating, thereby optimizing hydrodynamic parameters. The results show that increasing the hydrofoil swept angle in a certain range has a positive effect on the lateral static stability of underwater glider in different gliding conditions, and increasing the vertical tail aspect-ratio has a dual effect on the lateral static stability in different gliding conditions. The method provides a theoretical basis for the design of hydrodynamic parameters of underwater glider sailing under different working conditions.
2021,43(8): 68-76 收稿日期:2020-07-03
DOI:10.3404/j.issn.1672-7649.2021.08.014
分类号:U674.941
基金项目:国家重点研发计划(2016YFC0301100); 国家重点研发计划(2016YFC0301102)
作者简介:孙伟成(1987-),男,博士研究生,主要从事水下机器人技术研究
参考文献:
[1] DAVIS R E, ERIKSEN C C, JONES C P. Autonomous Buoyancy-Driven Underwater Gliders[C]// The Technology and Applications of Autonomous Underwater Vehicles, 2002: 37−58.
[2] ERIKSEN C C, OSSE T J, LIGHT R D, et al. Seaglider: a long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424–436
[3] 陈斌. 某型飞机高亚音速大迎角横向静稳定性改善研究[C]// 全国低跨超声速空气动力学文集. 2003: 109−112.
[4] 武建国, 陈超英, 王树新, 等. 混合驱动水下滑翔器滑翔状态机翼水动力特性[J]. 天津大学学报(自然科学与工程技术版), 2010, 43(1): 84–89
[5] LIU F, WANG Y, NIU W, et al. Hydrodynamic performance analysis and experiments of a hybrid underwater glider with different layout of wings[C]// Oceans. IEEE, 2014.
[6] 赵宝强. 水下滑翔机水平固定翼设计[J]. 舰船科学技术, 2016(1): 103–107
[7] 徐世勋, 刘玉红, 朱亚强, 等. 翼型对水下滑翔机滑翔性能影响分析[J]. 中国机械工程, 2017, 28(3): 286–293
[8] NAKAMURA M, ASAKAWA K, HYAKUDOME T, et al. Hydrodynamic coefficients and motion simulations of underwater glider for virtual mooring[J]. IEEE Journal of Oceanic Engineering, 2013, 38(3): 581–597
[9] AAGE C, SMITT L W. Hydrodynamic manoeuvrability data of a flatfish type AUV[C]// Oceans. IEEE, 1994.
[10] JAVAID M Y, OVINIS M, HASHIM F B M, et al. Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider[J]. International Journal of Naval Architecture & Ocean Engineering, 2017, 9(4): 382–389
[11] ZHANG F, THON J, THON C, et al. Miniature underwater glider: design and experimental results[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 394–399
[12] TYAGI A, SEN D. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach[J]. Ocean Engineering, 2006, 33(5–6): 798–809
[13] GRAVER, GRADY J. Underwater gliders: dynamics, control and design /[J]. Journal of Fluids Engineering, 2005, 127(3): 523–528
[14] 孙梦瑶. 水下滑翔机粘性水动力数值模拟方法研究[D]. 天津: 天津大学, 2014.
[15] 张怀新, 潘雨村. CFD在潜艇外形方案比较中的应用[J]. 船舶力学, 2006, 10(4): 1–8
[16] JENKINS S A, HUMPHREYS D E, SHERMAN J, et al. Alternatives for enhancement of transport economy in underwater gliders[C]// Oceans: IEEE, 2003: 948−950 Vol. 2.
[17] 孟凡豪, 严天宏, 何波, 等. 水下滑翔器整体外形设计及水动力性能分析[J]. 海洋工程, 2014, 32(2): 61–71
[18] 陈亚君, 李永成, 马峥, 等. 水下滑翔机水动力外形的选型分析[J]. 中国造船, 2015(3): 39–48