针对高密度复杂环境下的无人水面航行器(USV)航迹规划问题,将A*算法和蚁群算法相结合,提出一种改进型A*-蚁群混合算法。本算法结合A*算法在低密度环境区域航路规划的优势性,同时,当遇到高密度环境区域时引入蚁群算法提高局部规划能力,在传统蚁群算法基础上,改进了信息素的更新模型,增强了可行路径中最优路径的信息浓度,减弱了最差路径的信息浓度,并通过调整信息素浓度总和比例,增强算法的寻优能力。该方法能够有效地平衡全局和局部规划,提高在复杂环境下的USV航迹规划能力。通过仿真,验证了在复杂环境下该算法的有效性和优越性。
In order to solve the problem of path planning about unmanned surface vehicle(USV) in high-density and complex environment, an improved A*-ant hybrid algorithm is proposed by combining A * algorithm with ant colony algorithm. This algorithm combines the advantages of A * algorithm in route planning in low-density environment. At the same time, the ant colony algorithm is introduced to improve the ability of local planning when encountering high-density environment. Based on the traditional ant colony algorithm, the updating model of pheromone is improved, the information concentration of the best path in the feasible path is enhanced, and the information concentration of the worst path is weakened. By adjusting the proportion of the total pheromone concentration, the optimization ability of the algorithm is enhanced. This method can effectively balance the global and local planning, and improve the track planning ability in complex environment. The simulation results show that the algorithm is effective and superior in complex environment.
2021,43(8): 83-87 收稿日期:2020-08-18
DOI:10.3404/j.issn.1672-7649.2021.08.016
分类号:E925
作者简介:孙海文,男,博士,助理研究员,主要研究方向为武器系统建模与仿真、舰空导弹综合控制技术
参考文献:
[1] 邱晨, 周海峰, 王荣杰, 等. 改进蚁群的无人求生船航迹规划[J]. 集美大学学报 (自然科学版), 2019, 24(5): 358–363
[2] 陶重犇, 雷祝兵, 李春光, 等. 基于改进模拟退火算法的搬运机器人路径规划[J]. 计算机测量与控制, 2018, 26(7): 182–185
[3] KARIM B, ZHU Q. A fuzzy logic behavior architecture controller for a mobile robot path planning in multi-obstacles environment[J]. Research Journal of Applied Sciences Engineering & Technology. 2013, 5(14), 3835–3842
[4] BING F, LIN C, ZHOU Y, et al. An improved A* algorithm for the industrial robot path planning with high success rate and short length[J]. Robotics and Autonomous Systems, 2018, 106: 26–37
[5] ZHANG T, ZHU Y, SONG J. Real-time motion planning for mobile robots by means of artificial potential field method in unknown environment[J]. Industrial Robot, 2013, 37(4): 384–400
[6] 刘砚菊; 代涛; 宋建辉. 改进人工势场法的路径规划算法研究[J]. 沈阳理工大学学报, 2017(1): 61–65
[7] XU X, LIANG R S, YANG H Z. Path planning for agent based on improved genetic algorithm[J]. Computer Simulation, 2014, 31(6): 357–361
[8] DUAN H, QIAO P. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24–37
[9] ZHAO Q, ZHEN Z, CHEN G, et al. Path planning of UAVs formation based on improved ant colony optimization algorithm[C]//Proceedings of IEEE Conference on Guidance, Navigation and Control, 2015: 1549−1552.
[10] 康冰; 王曦辉; 刘富. 基于改进蚁群算法的搜索机器人路径规划[J]. 吉林大学学报(工学版), 2014, 44(4): 1062–1068
[11] 刘洋, 章卫国, 李广文, 等. 一种三维环境中的无人机多路径规划方法[J]. 西北工业大学学报, 2014, 32(3): 412–416