针对侧扫声呐受其测量机理和作业模式影响无法直接获取海底表面地形及水下目标物高度信息的问题,提出改进的明暗恢复形状最小化方法。通过从侧扫声呐原始数据文件出发,解析得到斜距量程、采样精度等重要参数以及二维瀑布图。在瀑布图基础上,提出一种基于小波变换的最小化算法,求解得到对应二维图中每一点的相对高度值,从而实现了海底表面地形的高精度三维重构。通过对比实验证明,与2种经典的最小化法相比,基于小波变换的最小化法性能明显提高。
Aiming at the problem that the side scan sonar cannot directly obtain the information of the seafloor surface topography and the height of the underwater target due to its measurement mechanism and operation mode, an improved method of minimizing the shape of the light and dark recovery is proposed. Starting from the original data file of the side scan sonar, the important parameters such as the slant range, sampling accuracy, and two-dimensional waterfall diagram are obtained by analysis. Based on the waterfall diagram, a minimization algorithm based on wavelet transform is proposed to obtain the corresponding two-dimensional The relative height value of each point in the figure realizes the high-precision three-dimensional reconstruction of the seabed surface terrain. And through comparative experiments, it is proved that compared with the two classical minimization methods, the performance of the minimization method based on wavelet transform is obviously improved.
2021,43(8): 125-130 收稿日期:2021-02-24
DOI:10.3404/j.issn.1672-7649.2021.08.024
分类号:TP311.1
基金项目:国家自然科学基金资助项目(No.51875447);陕西省自然科学基础研究计划(2021JLM-58);陕西省重点研发计划(No.S2018-YF-ZDGY-0583)
作者简介:刘浩林(1990-),男,硕士,助教,研究方向为水下机器人导航与控制技术
参考文献:
[1] 杜召平, 陈刚, 王达. 国外声呐技术发展综述[J]. 舰船科学技术, 2019, 41(1): 149–155
DU Zhaoping, CHEN Gang, WANG Da. Overview of the development of foreign sonar technology[J]. Ship Science and Technology, 2019, 41(1): 149–155
[2] BLONDEL P. The Handbook of side scan sonar[M]. UK: Springer Science & Business Media, 2010: 35-46.
[3] 李海滨, 滕惠忠, 宋海英, 等. 基于侧扫声纳图像海底目标物提取方法[J]. 海洋测绘, 2010(6)
LI Haibin, TENG Huizhong, SONG Haiying, et al. Extraction method of seabed target based on side scan sonar image[J]. Ocean Surveying and Mapping, 2010(6)
[4] 廖熠, 赵荣椿. 从明暗恢复形状(SFS)的几类典型算法分析与评价[J]. 中国图象图形学报, 2001(10): 11–19
LIAO Yi, ZHAO Rongchun. Analysis and evaluation of several typical algorithms for shape from shading (SFS)[J]. Journal of Image and Graphics, 2001(10): 11–19
[5] 胡志勇, 梁发周, 张秀芬, 等. 明暗恢复形状技术研究进展[J]. 郑州轻工业学院学报(自然科学版), 2007(Z1): 182–185
HU Zhiyong, LIANG Fazhou, ZHANG Xiufen, et al. Research progress on shading and shape restoration technology[J]. Journal of Zhengzhou University of Light Industry (Natural Science Edition), 2007(Z1): 182–185
[6] ZHANG R, TSAI P S, CRYER J E, et al. Shape from shading: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(8): 690–706
[7] BERTHOLD K. P. HORN. Height and gradient from shading[J]. International Journal of Computer Vision, 1990, 5(1): 37−75.
[8] ZHENG Q, CHELLAPPA R. Estimation of illuminant direction, albedo, and shape from shading[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991, 13(7): 680–702
[9] JOHNSON A E, HEBERT M. Seafloor map generation for autonomous underwater vehicle navigation[J]. Autonomous Robots, 1996, 3(2–3): 145–168
[10] LECLERC Y G, BOBICK A F. The direct computation of height from shading[C]// Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2002.
[11] 王丽娜. 侧扫声呐数据采集与地貌图像构建[J]. 北京测绘, 2018, 32(8): 965–969
WANG Lina. Side scan sonar data collection and landform image construction[J]. Beijing Surveying and Mapping, 2018, 32(8): 965–969
[12] 孔敏, 程永寿, 田先德, 等. 侧扫声纳标准数据存储格式制定及应用[J]. 北京测绘, 2015(3): 118–121
KONG Min, CHENG Yongshou, TIAN Xiande, et al. Development and application of side scan sonar standard data storage format[J]. Beijing Surveying and Mapping, 2015(3): 118–121
[13] 徐超, 李欣阳, 曹天宇, 等. 一种嵌入式侧扫声呐系统的设计与实现[J]. 舰船科学技术, 2016(S1): 162–165
XU Chao, LI Xinyang, CAO Tianyu, et al. Design and implementation of an embedded side scan sonar system[J]. Ship Science and Technology, 2016(S1): 162–165
[14] 张一, 成礼智. 小波变换图像压缩中最优小波基的选取方法[J]. 电视技术, 2004(10): 4–7
[15] ZHANG Yi, CHENG Lizhi. The selection method of the optimal wavelet basis in wavelet transform image compression[J]. Television Technology, 2004(10): 4–7