针对船舶噪声和时变多途干扰问题,提出基于双编码策略的水声正交频分复用(DE-OFDM)通信算法。基于信道卷积编码的冗余和记忆特性,将信息比特数量提升多倍,进行约束,得到编码比特,提高通信系统抗船舶噪声和时变多途干扰性能;提出差分编码技术,构建参考相位,利用相邻相位差值进行符号编码,有效消除船舶噪声和时变多途干扰;基于循环前缀技术和OFDM通信技术抗多途特性,有效消除时变多途干扰。进行仿真和100组水箱时变且含船舶噪声信道下的试验,试验结果验证了所提算法的有效性。
In order to solve the problem of ship noise and time-varying multipath interference, an underwater acoustic orthogonal frequency division multiplexing communication algorithm based on dual encoding strategy (DE-OFDM) is proposed. Based on the redundancy and memory characteristics of the channel convolutional coding, the number of information bits is increased by multiple times, the constraints are obtained, and the coded bits are obtained to improve the performance of the communication system against ship noise and time-varying multipath interference. The differential coding technology is proposed, the reference phase is constructed, and the sign coding is carried out by using the difference of adjacent phases, which can effectively eliminate the ship noise and time-varying multipath interference. Based on the cyclic prefix technology and OFDM communication technology, it can effectively eliminate the time-varying multipath interference. Simulation and experiments were carried out 100 groups under the channel of water tank with time-varying and ship noise. Good experimental results demonstrate the effectiveness of the proposed algorithm.
2021,43(8): 135-139 收稿日期:2020-07-22
DOI:10.3404/j.issn.1672-7649.2021.08.026
分类号:TN929.3
基金项目:国家自然科学基金资助项目(61771271);山东省高等学校科学技术计划项目(J18KA315);青岛市应用基础研究计划项目青年专项(19-6-2-4-cg)
作者简介:邢延超(1973-),男,博士,副教授,研究方向为数字信号处理,水声通信技术
参考文献:
[1] A. SONG, M. STOJANOVIC, M Chitre. Editorial underwater acoustic communications: where we stand and what is next?[J]. IEEE Journal of Oceanic Engineering, 2019, 44(1): 1–6
[2] T. C. Yang Properties of underwater acoustic communication channels in shallow water[J]. Journal of the Acoustical Society of America, 2012, 131(1): 129–145
[3] P. QARABAQI AND M. STOJANOVIC Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701–717
[4] P. B. ZHU, X. M. XU, X. B. TU, et al Anti-Multipath orthogonal chirp division multiplexing for underwater acoustic communication[J]. IEEE Access, 2020, 8: 13305–13314
[5] 孙柏昶, 陈超群. MFSK调制方式在极低速通信中的性能分析[J]. 无线电通信技术, 2019, 45(2): 182–185
[6] 王楠, 古瑞江, 于宏毅. 一种新型的FSK解调系统设计[J]. 通信技术, 2008(9): 29–31
N. WANG, R. J. GU, et al A novel design of FSK demodulation system[J]. Communication Technology, 2008(9): 29–31
[7] C. B. HE, L. Y. JING, R. XI, et al Time-frequency domain turbo equalization for single-carrier underwater acoustic communications[J]. IEEE Access, 2019, 7: 73324–73335
[8] 程丹. 多径环境下的扩频通信接收技术研究与实现[D]. 四川: 电子科技大学, 2019.
D. CHENG. A research and implementation of spread spectrum communication receiving technology in multipath environment[D]. Sichuan: University Of Electronic Science And Technology Of China, 2019.
[9] 魏卓群. 移动稳健扩频水声通信技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[10] 尹艳玲, 乔钢, 刘凇佐. 基于虚拟时间反转镜的水声OFDM信道均衡[J]. 通信学报, 2015, 36(1): 94–103
[11] 朱彤, 桑恩方. 基于正交频分复用的高速水声通信技术[J]. 哈尔滨工程大学学报, 2005(1): 71–74
T. ZHU, E. F. SANG Research on high speed underwater acoustic communication based on orthogonal frequency division multiplexing[J]. Journal of Harbin Engineering University, 2005(1): 71–74
[12] 尹艳玲, 乔钢, 刘凇佐, 等. 浅水时变多途信道特性分析与模型实验研究[J]. 声学学报, 2019, 44(1): 96–105
Y. L. YIN, G. QIAO, et al Shallow water time-varying multipath channel characteristic analysis and model amendment[J]. Acta Acustica, 2019, 44(1): 96–105
[13] G. QIAO, Q. SONG, et al A low-complexity orthogonal matching pursuit based channel estimation method for time-varying underwater acoustic OFDM systems[J]. Applied Acoustics, 2019, 148: 246–250
[14] S. Y. XING, G. QIAO, et al A blind side information detection method for partial transmitted sequence peak-to-average power reduction scheme in OFDM underwater acoustic communication system[J]. IEEE Access, 2018, 6: 24128–24136
[15] K. PRASHANT, K. PREETAM Performance evaluation of π/4-DQPSK OFDM over underwater acoustic channels[J]. Wireless Personal Communications, 2016, 91(3): 1137–1152
[16] G. YANG, J. W. YIN, et al A kalman filter-based blind adaptive multi-user detection algorithm for underwater acoustic networks[J]. IEEE Sensors Journal, 2016, 16(11): 4023–4033
[17] 王驰. 基于差分频分复用技术的水声通信研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
C. WANG. Research on differential frequency division multiplexing based underwater acoustic communication[D]. Harbin: Harbin Engineering University, 2018.