本文建立炮尾-身管非线性有限元模型,根据火炮设计理论计算炮膛作用载荷,对炮尾-身管进行非线性接触有限元分析,分别根据基于单剪、双剪和八面体剪应力强度理论的Tresca强度理论、最大偏应力强度理论和Mises强度理论对炮尾和身管抓钩接触部位进行强度校核,对比分析名义尺寸和实测尺寸下的炮尾抓钩强度。校核结果Mises居中,最大偏应力最小,Tresca最大,与理论预测值一致,Tresca强度理论不适合直接用于炮尾抓钩结构的设计。同时给出了3种等效应力随抓钩倒角根部路径的分布情况。分析结果表明,名义尺寸设计强度足够,实测尺寸模型由于存在机加超差,抓钩壁厚偏,强度不足,造成抓钩部位裂口。
The gun breech-barrel finite element model was established in this article, and the gun bore axial load was calculated according to the theory of artillery gun design. Nonlinear contact finite element analysis was carried on the gun breech-barrel structure. The intensity check and contrast analysis of gun breech and barrel grapnel contact part of nominal and measured size model was emphatically carried out according to the Tresca, maximum deviatoric stress and Mises strength theory, which were based on the single-shear, twin-shear and octahedral-shear stress strength theory respectively. The intensity checking results indicates that Mises result in the middle, maximum deviatoric stress result is minimum and Tresca result is maximum, which were consistent with the theoretical prediction. The Tresca strength theory is not suitable for the design of breech grapnel. The distribution of three kinds of equivalent stress along the path of grapnel’s chamfered root were also given. The analysis results shows that the nominal size model has enough strength in the view of design, and the measured size model causes the breech grapnel wall thinner and intensity insufficient due to the existence of the out of tolerances in mechanical, and then caused the fracture of breech grapnel.
2021,43(8): 175-181 收稿日期:2021-02-09
DOI:10.3404/j.issn.1672-7649.2021.08.034
分类号:TJ391
作者简介:葛书强(1989-),男,硕士,工程师,主要研究方向为舰炮武器发射系统结构设计
参考文献:
[1] 张相炎, 郑建国, 袁人枢. 火炮设计理论[M]. 北京: 北京理工大学出版社, 2014.
[2] 高跃飞. 火炮反后坐装置设计[M]. 北京: 国防工业出版社, 2010.
[3] 高树滋, 陈运生, 张月林, 等. 火炮反后坐装置设计[M]. 北京: 兵器工业出版社, 1995.
[4] 张小兵. 枪炮内弹道学[M]. 北京: 北京理工大学出版社, 2014.
[5] 俞茂宏. 强度理论百年总结[J]. 力学进展, 2004, 34(4): 529–560
[6] 俞茂宏, M. YOSHIMINE, 强洪夫, 等 强度理论的发展和展望[J]. 工程力学, 2004, 21(6): 1–20
[7] 朱兆祥. 材料本构关系理论讲义[M]. 北京: 科学出版社, 2015.
[8] 米海珍, 胡燕妮. 塑性力学[M]. 北京: 清华大学出版社. 2014.
[9] 陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2012.
[10] VON W. LODE. Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel[J]. Z. Physik, Bd. 36(1926). p. 913−939.
[11] TAYLOR G. I., QUINNEY H. The plastic distortion of metals[J]. Trans. Roy. Soc. (London), Series A, vol. 230 (1931) p. 323−362.
[12] RICE J R. Limitations to the small scale yielding approximation for creak tip plasticity[J]. Mech. Phys, Solid, 1974, 22: 17–26
[13] MOGI K. Effect of the intermediate principal stress on rock failure[J]. Journal of Geophysical Research, 1967, 72: 5117–5131
[14] 张俊善. 材料强度学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
[15] YU MAOHONG. Twin shear stress yield criterion[J]. Inter. J. Mech. Sci., 1983, 25(1): 71–74