海洋流场密度因温度和盐度的不均匀变化具有垂向分层现象,合成孔径雷达(SAR)检测潜航体在分层流中运动的海表特征呈现较大差异的功率谱特性。基于海洋遥感中的频谱分析方法,利用CFD仿真技术手段,模拟不同潜航体模型在分层流中的运动情况,运用快速傅里叶变化进一步处理二维波高信号,深入探究了潜航体的附体对流场内界面和自由表面的影响。研究表明:基于频谱分析法的尾迹特性研究能有效揭示不同频率成分对界面粗糙度的影响,能够有效定义和区分潜航体附体造成自由表面辐聚辐散效应的差异;在航速、潜深和分层模式等相同时,尾舵对尾流场具有一定的优化效果,指挥台围壳是影响海表尾迹的主要因素。
Due to the inhomogeneous variation of temperature and salinity, the density of ocean flow field has vertical stratification phenomenon, and the sea surface characteristics detected by synthetic aperture radar (SAR) in stratified flow show great difference in power spectrum characteristics. Based on the spectrum analysis method of ocean remote sensing, the motion of different submarine models in stratified flow is simulated by using CFD simulation technology. The two-dimensional wave height signal is further processed by using fast Fourier transform, and the influence of submarine appendage on the flow field interface and free surface is deeply explored. The results show that: the wake characteristics research based on spectrum analysis method can effectively reveal the influence of different frequency components on the interface roughness, and can effectively define and distinguish the difference of free surface convergence and divergence effect caused by submarine appendages; when the speed, depth and stratification mode are the same, the rudder has a certain optimization effect on the wake field, and the command platform enclosure is the main factor affecting the surface wake Key factors.
2021,43(9): 19-24 收稿日期:2020-10-16
DOI:10.3404/j.issn.1672-7649.2021.09.004
分类号:U662.2
基金项目:装备预研基金资助项目(6141B06274),国家自然科学基金资助项目(51779053)
作者简介:胡开业(1980-),男,博士,副教授,研究方向为舰船总体性能
参考文献:
[1] LU Jian-wei, WANG Xin-lei, ZENG Hong-jun. Research on the assessment methodology for design alternatives of navy vessels[J]. Chinese Journal of Ship Research, 2006, 1(1): 21–24
[2] ABDILGHANIE A M, DIAMESSIS P J. The internal gravity wave field emitted by a stably stratified turbulent wake[J]. Journal of Fluid Mechanics, 2013, 720: 104–139
[3] 柏铁朝, 卢锦国. 附体对潜艇阻力及尾部伴流场的影响[J]. 舰船科学技术, 2013, 35(3): 47–51
[4] CHEN, J. P., ZHU, D. X. Numerical simulations of wave-induced ship motions in time domain by a rankine panel method[J]. Hydrodyn, 2010, 22(3): 373–380
[5] NEMATOLLAHI A, DADVAND A., DAWOODIAN M. An axisymmetric underwater vehicle-free surface interaction: A numerical study[J]. Ocean Engineering, 2015, 96: 205–214
[6] Fluent 6.2 User’s Guide (3). Fluent Inc, 2006. Hirt, C. W., Nichols, B. D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Comput. Phys. 39, 201–221.
[7] SHARIATI S. K., MOUSAVIZADEGAN S. H The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface[J]. Applied Ocean Research, 2017, 67: 31–43
[8] SHEN, Y. M., Ng, C. O., ZHENG, Y. H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation ke turbulence modeling[J]. Ocean Engineering, 2004, 31: 87–95
[9] TAHARA, Y., STERN, F. A large-domain approach for calculating ship boundary layers and wakes and wave fields for nonzero Froude number[J]. Comput. Phys., 1996, 127: 398–411
[10] 何广华, 刘双, 张志刚, 等. 附体对潜艇兴波尾迹的影响分析[J]. 华中科技大学学报(自然科学版), 2019, 47(10): 56–62
[11] TARAFDER, M. S., SUZUKI, K. Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method[J]. Ocean Engineering, 2008, 35: 536–544
[12] ZHAO, X. Z., HU, C. H., SUN, Z. C. Numerical simulation of extreme wave generation using VOF method[J]. Hydrodyn, 2010, 22(4): 466–477
[13] LIU T. -L., GUO Z. -M. Analysis of wave spectrum for submerged bodies moving near the free surface[J]. Ocean Engineering, 2013, 58: 239–251