为了研究船舶可调螺距螺旋桨螺距变化对轴系结构振动的影响,本文以某集装箱船的推进轴系和螺旋桨为例,采用有限元分析方法对其进行流固耦合仿真,分析船舶尾轴的应力与变形、振动以及模态变化。研究结果表明,螺旋桨螺距改变螺旋桨周围水域的流线运动状态,使得其受力变形更加不均匀。随着螺旋桨螺距的逐渐增大,轴系固有频率减小;船舶尾轴在一些特定频率附近会产生较大的共振幅值。为提高尾轴使用寿命,尾轴激励应避免这些频率。在一定范围内,尾轴在22°左右的螺距角下更容易产生较大的振动,可通过合理调节螺距角,以避免出现共振现象。
In order to analyze the influence of propeller pitch variation on shaft structure vibration, this paper takes a container ship's propulsion shafting as an example, carries out fluid structure coupling simulation with finite element analysis method, and analyzes the stress, deformation, vibration and modal changes of the ship's stern shaft. The results show that the propeller pitch changes the streamline motion state around the propeller, which makes the stress deformation more uneven. With the gradual increase of the propeller pitch, the natural frequency of the shafting decreases; the ship stern shaft will produce large resonance amplitude near some specific frequencies. In order to improve the service life of the stern shaft, these frequencies should be avoided. In a certain range, the stern shaft is more likely to produce larger vibration when the pitch angle is about 22° and the resonance phenomenon can be avoided by adjusting the pitch angle reasonably.
2021,43(9): 54-59 收稿日期:2020-10-15
DOI:10.3404/j.issn.1672-7649.2021.09.010
分类号:U664.21
基金项目:国家自然科学基金资助项目(51839005)
作者简介:张梦(1996-),女,硕士研究生,研究方向为船舶推进技术
参考文献:
[1] 孙海涛, 熊鹰, 张可. 调距桨几何参数对水动力性能影响研究[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(1): 140–143+148
[2] 宫健. 可调螺距螺旋桨水动力性能的数值分析[D]. 大连:大连理工大学, 2011.
[3] CHANG X, ZOU J X, HUANG S, et al. Influence on the hydrodynamic performance of a variable vector propeller of different rules of pitch angle change[J]. Journal of Marine Science and Application, 2007(4): 32–36
[4] Cheng-zhang GU, Bai-lin ZHANG. Numerical analysis of propeller open-water performance and stress distribution in the blade of ship propeller[J]. Chinese Quarterly of Mechanics, 2011
[5] 胡磊, 谭廷寿. 大侧斜螺旋桨敞水性能分析[J]. 船海工程, 2010, 39(1): 41–44
[6] 张永坤, 王展智, 胡世峰. 调距桨转叶力矩数值预报研究[J]. 舰船科学技术, 2015, 37(9): 40–45
[7] 赵威. 船用螺旋桨优化设计及参数研究[D]. 上海:上海交通大学, 2008.
[8] 叶礼裕, 王超, 黄胜, 等. 不同螺距拟合方式对螺旋桨优化效果的影响分析[J]. 中国造船, 2015, 56(3): 96–107
[9] LEE J H, PARK H G, KIM J H, et al. Reduction of propeller cavitation induced hull exciting pressure by a reflected wave from air-bubble layer[J]. Ocean Engineering, 2014, 77(1): 23–32
[10] CHEN Kai, ZHOU Xincong, ZHANG Cong, et al. Experimental research on ship shafting power flow under propeller exciting force[C]// ICSV 2016 - 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, 2016.
[11] 王丹. 复合材料螺旋桨流固耦合分析研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[12] 齐冠鸣. 基于Ansys的水下潜体螺旋桨对环境声速场的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[13] 沈煜. 船舶尾部伴流场的数值预报及尺度效应研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.