为提高无人航行器对轨迹的实航跟踪能力,结合航行器运动特性,提出势点跟踪算法,实现对典型航迹(环形轨迹)的稳定跟踪。以无人水面艇(Unmanned Surface Vehicle, USV)作为验证平台,基于拟合偏差的最小二乘航向辨识,获得系统数学模型,并设计相应的控制律,在搭建好仿真平台后,针对无人水面艇控制特性设计相关控制策略及制导律,完成势点跟踪算法的设计及仿真验证。后经典型海况下多航次试验,经过对实航轨迹及USV与环形轨迹间距离变化规律分析,并结合数据均方根大小,表明了环形轨迹跟踪方法设计的合理性。
In oder to improve the real-track tracking ability of the unmanned vehicle on the trajectory, combined with the motion characteristics of the vehicle, apotential point tracking algorithm is proposed to relize the typical track(circular trajectory). The unmanned surface vehicle is taken as the verification platform, and the mathematical model of the system is obtain ed based on the least square course identification of fitting deviation, and the corresponding control law is designed. After the simulation platform is built, relevant control strategies and guidance laws are designed for the control characteristics of unmanned surface vehicle, and the design and simulation verification of potential point tracking algorthm are completed. After the multi-voyage test under typical sea conditions, the real track and the distance between unmanned surface vehicle and circular trajectory are analyzed, and the data root-mean-square size is combined to show the rationality of the design of circular trajectory tracking method.
2021,43(9): 112-116 收稿日期:2020-09-14
DOI:10.3404/j.issn.1672-7649.2021.09.022
分类号:TP242.3
作者简介:宋吉广(1992-),男,助理研究员,主要研究方向为无人航行器运动控制方法
参考文献:
[1] 张慧琳, 李醒飞, 杨少波, 等. 深海自持式智能浮标双闭环模糊PID定深控制[J]. 信息与控制, 2019, 48(2): 202–208
[2] XU T, SUTTON R, SHARMA S. A multi-sensor data fustion navigation system for an unmanned surface vehicle[J]. Journal of Engineering for the Maritime Environment, 2007, 221(4): 167–182
[3] 黄琰, 李岩, 余建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215–231
[4] 王常顺, 肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报, 2016, 46(4): 55–59
[5] 周焕银, 封锡盛, 胡志强, 等. 基于多辨识模型优化切换的USV航向动态反馈控制[J]. 机器人, 2013, 35(5): 553–557
[6] 谭西都. 搜救无人艇航速及航向控制[D]. 浙江: 浙江大学, 2019.
[7] 陈霄, 刘忠, 姜晓政. 无人艇非线性K-T模型参数辨识算法[J]. 电光与控制, 2018, 25(8): 29–31
[8] 王舜. 无人艇直线路径跟踪控制的研究与实现[D]. 大连: 大连海事大学, 2017.
[9] FAN Y S, SUN Y T, WANG G F. On Model Parameter Identification and Trajectory Tracking Control for USV Based on Backstepping[C]//Proceedings of the 36th Chinese Control Conference. Dalian, China: Chinese Control Conference, 2017: 4757−4761.
[10] DONG Z P, WAN L, LI Y M, et al. Trajectory tracking control of underactuated USV based on modified backstepping approach[J]. Ocean Engineering, 2015, 7: 817–832
[11] 廖煜雷. 无人艇的非线性运动控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[12] 张操. 无人水面船运动控制体系结构及航迹跟踪控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[13] 付悦文. 小型无人艇的无模型自适应跟踪方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[14] WU G X, ZOU J, WAN L, et al. Design of the motion control system for water-jet-propelled unmanned surface vehicle[J]. Control Theory & Applications, 2010, 27(2): 257–262
[15] 田勇. 水面无人艇运动控制系统设计与实现[D]. 大连: 大连海事大学, 2016.
[16] 朱齐丹, 马俊达, 刘可. 基于扰动观测器的无人水面船鲁棒轨迹跟踪[J]. 电机与控制学报, 2016, 20(12): 66–73
ZHU Qi-dan, MA Jun-da, LIU Ke. A nonlinear disturbance observer based on robust approach to the trajectory tracking of an unmanned surface vehicle[J]. Electric Machines and Control, 2016, 20(12): 66–73
[17] BRHAUGE, PAVLOV A, PANTELEY E, et al. Straight line path following for formations of underactuated marine surface vessels[J]. IEEE Transaction Control Systems Technology, 2011, 19(3): 493–506
[18] 陈霄, 刘忠, 张健强, 等. 基于改进积分视线导引策略的欠驱动无人水面艇路径跟踪[J]. 北京航空航天大学学报, 2018, 44(3): 489–499
CHEN Xiao, LIU Zhong, ZHANG Jian-qiang, et al. Path following of underactuated USV based on modified integral line-of-sight guidance strategies[J]. Journal of Naval University of Engineering, 2018, 44(3): 489–499
[19] 陈霄, 刘忠, 董蛟, 等. 欠驱动无人艇路径跟踪控制算法[J]. 海军工程大学学报, 2018, 30(3): 108–112
[20] 董早鹏, 万磊, 廖煜雷, 等. 基于非对称模型的欠驱动USV路径跟踪控制[J]. 中国造船, 2017, 57(1): 117–126
DONG Zao-peng, WAN Lei, LIAO Yu-lei, et al. Path following control of underactuated USV based on asymmetric model[J]. Shipbuilding of China, 2017, 57(1): 117–126