基于Sesam软件研究超大型海洋平台双船拆解系统在风浪流载荷下的运动特性,重点分析双船拆解系统与单个拆解船在风浪流载荷下运动差异,并给出双船拆解系统运动短期预报。首先通过频域分析得到双船拆解系统和单个拆解船在波浪载荷下运动响应幅值,在此基础上进行时域分析,得到双船拆解系统和单个拆解船在风浪流载荷下的六自由度运动时历曲线。数值模拟结果表明:双船拆解系统由于结构的对称性,在风浪流载荷下的横摇和首摇运动远小于拆解船,横摇和首摇扰动减小后大部分推力可用来修正纵荡和横荡偏移,从而使双船拆解系统在风浪流载荷下六自由度运动均小于单个拆解船;由于双船拆解系统水下部分为双体结构,双船拆解系统对波浪频率变化敏感,作业时不能忽略波浪频率的影响。
Based on Sesam software, the motion characteristics of a twin-ship ultra-large offshore platform dismantling system under wind, wave and current load are studied in the present work. The differences of the motion characteristics between the dismantling system of twin-ship and the dismantling ship before coupling under wind and wave loads are analyzed emphatically, and the short-term forecast of the six-degree-of-freedom motion of the dismantling system of twin-ship is given. First, based on the frequency domain analysis of HydroD module, the six-degree-of-freedom response amplitudes of the twin-ship dismantling system and the dismantling ship under wave loads in different directions and frequencies are obtained; on this basis, the calculation results in the above frequency domain are introduced into Sima module for time-domain analysis, and the motion characteristics of the twin-ship dismantling system and the dismantling ship under wind and wave loads are obtained. The numerical simulation results show that the motion amplitude of the twin-ship dismantling system under wave load is less than the dismantling ship; the sway, roll and yaw motion amplitudes of the twin-ship dismantling system under wind, wave and current load are much smaller than the dismantling ship; the surge, heave and pitch motion amplitudes of the twin-ship dismantling system are also reduced to varying degrees; the heave, pitch and yaw motion amplitudes of the twin-ship dismantling system vary greatly with wave frequency. The influence of wave frequency should not be neglected during operation.
2021,43(9): 122-127 收稿日期:2020-12-16
DOI:10.3404/j.issn.1672-7649.2021.09.024
分类号:U672.8
基金项目:工信部高技术船舶科研项目(MC-201713-H02)
作者简介:刘永泽(1997-),男,硕士研究生,研究方向为船舶与海洋结构物强度分析
参考文献:
[1] FOWLER A M, MACREADIE P I, JONES D O B, et al. A multi-criteria decision approach to decommissioning of offshore oil and gas infrastructure[J]. Ocean & Coastal Management, 2014, 87(jan.): 20-29. VIKING Life-Saving Equipment Norge AS. Installation, Operation and Maintenance Manual, IOM[M]. 2006: 25−31.
[2] 秦立成. 我国海洋平台浮托安装技术现状及未来[J]. 海洋工程装备与技术, 2019, 6(S1): P. 189–194
[3] HU Z, LI X, ZHAO W, et al. Nonlinear dynamics and impact load in float-over installation[J]. Applied Ocean Research, 2017, 65: 60–78
[4] 李巍, 胡智焕, 李欣, 等. 新型双船起重拆除平台试验研究[J]. 海洋工程, 2020(1): 30–41
[5] 易丛, 李达, 白雪平, 等. 浮托船舶在东海海域组块安装的应用分析[J]. 舰船科学技术, 2019, 41(6): 94–99
[6] 昝英飞, 郭睿男, 吴朝晖, 等. 浮托安装系泊系统时域耦合分析[J]. 海洋工程装备与技术, 2019(S1)
[7] 王飚, 杨小龙, 张广磊, 等. 动力定位驳船浮托安装关键技术及其在东海适用性分析[J]. 中国造船, 2017, 58(1): 162–169
[8] 彭景环. 海上浮托安装中多浮体水动力耦合作用研究[D]. 上海:上海交通大学, 2011.
[9] 七零八所《船舶科技简明手册》编写组. 船舶科技简明手册[M]. 北京:国防工业出版社, 1977.
[10] 范尚雍. 船舶操纵性[M]. 北京:国防工业出版社, 1988.
[11] 曹顺利. 深海采矿船海上作业环境适应性研究[D]. 哈尔滨:哈尔滨工程大学, 2019.