研究平头弹和半圆形弹对带斜向肋板的钢/尼龙夹层结构抗侵彻性能。选用Johnson-Cook和Cowper-Symonds方程分别作为钢和尼龙的本构模型,进行2种弹体以不同初速度对肋板角度为15°,30°和45°的不同夹层结构侵彻数值仿真,获得了3种夹层结构针对2种弹体的弹道极限。结果表明:斜向肋板可迫使弹体产生偏航;弹体在临界贯穿夹层结构时弹体偏角达到最大,且弹体偏角随弹体初速度的增加而递减;弹体贯穿夹层结构产生的偏角与其剩余速度呈负相关关系;肋板角度为15°时的抗弹性能最优。
The anti-penetration performance of the steel-nylon sandwich structure with oblique ribbed plate under the penetration of flat-nosed and hemispherical-nosed projectiles is studied. Johnson cook and Cowper-Symonds equations are used as constitutive models of steel and nylon respectively. Numerical simulations are carried out for the penetration of two kinds of projectiles into different sandwich structures with rib angles of 15°, 30° and 45° at different initial velocities, and the ballistic limits of the three sandwich structures for two kinds of projectiles are obtained. The results show that the oblique ribbed plate can force the projectile to yaw; when the projectile just penetrates through the sandwich structure, the deflection angle reaches the maximum, and the deflection angle decreases with the increase of the initial velocity; the deflection angle of the projectile penetrating through the sandwich structure has a negative correlation with the residual velocity; when the rib angle is 15°, the anti-penetration performance of the sandwich structure is the best.
2021,43(10): 1-5 收稿日期:2020-05-28
DOI:10.3404/j.issn.1672-7649.2021.10.001
分类号:TJ012.4
基金项目:镇江市重点研发计划(GZ2018005)
作者简介:沈超明(1979-),男,高级实验师,主要从事复合材料力学行为、结构抗冲击性能与防护的研究
参考文献:
[1] 段建, 王可慧, 周刚, 等. 弹体斜侵彻硬介质目标的临界跳弹评估方法[J]. 兵工学报, 2016, 37(8): 1395–1400
[2] 魏莉, 吴湘, 韩妙玲, 等. 复合材料结构板胶膜热破机研制[J]. 航天制造技术, 2014(3): 21–25
[3] 黄柳生.复合材料夹层板船体结构强度分析方法研究[D].哈尔滨: 哈尔滨工程大学. 2009.
[4] 彭蒙, 刘龙权, 赵剑, 等. 芯体壁厚对Nomex蜂窝夹层结构抗冲击性能的影响[J]. 振动与冲击, 2016, 35(21): 177–182
[5] 张长仔.空中近场爆炸载荷下泡沫铝波纹杂交夹层板动态响应研究[D].武汉: 华中科技大学, 2017.
[6] 张俊, 郭锐, 刘荣忠, 等. 金属桁架增强陶瓷复合装甲抗弹性能研究[J]. 南京理工大学学报, 2012, 36(5): 773–778
[7] M. HALAMI-CHOOBAR, M. SADIGHI Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core[J]. Aerospace Science and Technology, 2013, 32(1): 142–152
[8] 倪长也, 金峰, 卢天健, 等. 三种点阵金属三明治板的抗侵彻性能模拟分析[J]. 力学学报, 2010, 42(6): 1125–1136
NI Chang-ye, JIN Feng, LU Tinan-jian, et al. Penetration and perforation performance of three pyramidal lattice-cored sandwich structures:numerical simulation[J]. Chinese Journal of Theoretical and applied mechanics, 2010, 42(6): 1125–1136
[9] 葛超, 董永香, 陆志超, 等. 弹丸头部对斜侵彻弹道偏转影响研究[J]. 兵工学报, 2015, 36(2): 255–262
[10] JOHNSON G R, COOK WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature[C]. Proceeding of the 7th International Symposium on Ballistics. Hague, Netherlands: International Ballistics Committee, 1983: 541−547.
[11] 张伟, 肖新科, 郭子涛, 等. 双层A3钢靶对平头杆弹的抗侵彻性能研究[J]. 高压物理学报, 2012, 26(2): 163–170
ZHANG Wei, XIAO Xin-ke, GUO Zi-tao, et al. Study on anti-penetration performance of double-layer A3 steel target against flat-nosed projectile[J]. Chinese Journal of High Pressure Physucs, 2012, 26(2): 163–170
[12] 蔡中兵. 高速飞行离散杆动力学特性及对目标的侵彻效应[D]. 南京:南京理工大学,2007.
[13] 李宣荣.高速冲击挤进问题的瞬态有限元分析[D].西安: 西北工业大学. 2014.