为了掌握复合夹层板的梯度泡沫铝夹芯在受到高速弹片冲击时,梯度大小、方向对梯度泡沫铝芯层变形模式、吸能性能的影响,本文采用Abaqus建立梯度参数γ分别为−2.1,−1.5,0,1.5,2.1的二维Voronoi梯度泡沫铝有限元模型,梯度参数的设置考虑了梯度大小、方向的影响,冲击过程采用指数衰减速度冲击方法,研究冲击过程中不同模型的变形特征、动能以及内能的变化。研究结果表明,梯度泡沫铝靠近冲击端的上半部分贡献了应变的60%以上,该区域局部密度越大,梯度泡沫铝的能量吸收能力就越强。由于负梯度泡沫铝靠近冲击端区域密度最大,因而其吸收的内能高于均匀随机泡沫铝和正梯度泡沫铝,并且梯度大小|γ|越大, 负梯度泡沫铝的吸能优势越明显。因此,将负梯度泡沫铝填充到船体夹层板中,可以提高船体夹层板的抗冲击性能。
In order to grasp the influence of gradient size and direction on the deformation mode and energy absorption performance of the gradient aluminum foam sandwich panel when it is impacted by high-speed shrapnel, this paper uses Abaqus to establish two-dimensional Voronoi gradient aluminum foam finite element models with gradient parameters γ of −2.1, −1.5, 0, 1.5, 2.1, taking the influence of the gradient size and direction into account.The impact process adopts the exponential decay velocity impact method and the deformation characteristics of different models during the impact process、Kinetic energy and internal energy values will be recorded. The results show that the upper part of the gradient aluminum foam near the impact end contributes more than 60% of the strain.The greater the local relative density of the strain zone, the stronger the energy absorption capacity of the gradient aluminum foam. Since the density of the negative-gradient aluminum foam is the highest near the impact end, the internal energy absorbed is higher than that of the uniform random aluminum foam and the positive-gradient aluminum foam. And, the larger the gradient |γ|, the more obvious the energy absorption advantage of negative gradient aluminum foam. Therefore, the application of negative gradient aluminum foam to the hull sandwich panel can improve the impact resistance of the hull sandwich panel.
2021,43(10): 20-24 收稿日期:2020-10-09
DOI:10.3404/j.issn.1672-7649.2021.10.005
分类号:O347.3
作者简介:郝高明(1995-),男,硕士研究生,研究方向:船舶结构设计
参考文献:
[1] 王政红.新型降噪材料—泡沫铝在船舶上的应用[C]//中国材料研究学会.2004年材料科学与工程新进展.中国材料研究学会: 中国材料研究学会, 2004: 1460−1465.
[2] 黄可, 何思渊, 何德坪. 梯度孔径多孔铝合金的压缩及吸能性能[J]. 机械工程材料, 2010, 34(1): 77–79+83
[3] SONG Y., ZHAO L., WANG Z., et al. Study on the thermal properties of closed-cell metal foams based on voronoi random models[J]. Numerical Heat Transfer, Part A. Application: An International Journal of Computation & Methodology, 2013, 64(7)
[4] 陈丹阳. 基于Voronoi模型的多孔泡沫材料导热及弹性性能研究[D]. 重庆: 重庆大学, 2017.
[5] 田天, 陈太林, 赵伟. 相对密度对泡沫铝动态压缩力学性能的影响[J]. 广东建材, 2008(9): 42–43
[6] 王宇新, 顾元宪, 孙明, 等. 冲击载荷作用下多孔材料复合结构防爆理论计算[J]. 兵工学报, 2006, 27(2): 375–379
[7] 唐凯, 王晓东, 谭朝明. 超声速反舰导弹空爆对舰艇的安全威胁研究[J]. 现代防御技术, 2019, 47(6): 10–18+80
[8] 张明华, 赵恒义, 谌河水. 泡沫铝夹芯板动态抗侵彻性能的实验研究[J]. 力学季刊, 2008(2): 241–247
[9] 张健, 赵桂平, 卢天健. 梯度泡沫金属的冲击吸能特性[J]. 工程力学, 2016, 33(8): 211–220