为了兼顾水下航行器和空中飞行器的优势,本文提出一种基于升力原理实现水空作业且能多次自由穿越水气界面的航行器——海空跨域航行器,应用STAR-CCM+软件,基于重叠网格方法对航行器的气动水动特性进行数值模拟,分别得到了航行器在水中和空中航行时的升阻力以及升阻力系数。通过对结果的分析,验证了该航行器可以分别满足在水中和空中航行时的升阻力要求,这对海空跨域航行器的设计有着重要的参考意义。
In order to give consideration to the advantages of underwater vehicle and air vehicle, this paper proposes a kind of vehicle that can fly in the air and water and can freely cross the water-air interface for many times, which is aerial underwater vehicle. The aerodynamic and hydrodynamic characteristics of the vehicle were simulated based on STAR-CCM+ and the overset mesh, and the lift and drag coefficient were obtained respectively in water and air. Through the analysis of the results, it is verified that the vehicle can meet the requirements of underwater and air navigation, which has important reference significance for the design of aerial underwater vehicle.
2021,43(10): 46-50 收稿日期:2020-10-20
DOI:10.3404/j.issn.1672-7649.2021.10.011
分类号:V279
基金项目:国家自然科学基金资助项目(11702173 )
作者简介:王凯朋(1996-),男,硕士研究生,研究方向为海空跨域航行器外形设计
参考文献:
[1] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(9): 152–157
[2] Navy launches UAV from submerged submarine [EB/OL].(2020–10-20). http://www.nrl.navy.mil/media/newsreleases/2013/.
[3] TRENT Y, JASON G, DAN E. Flimmer: A Flying Submarine[Z]. Naval research laboratory SPECTRA, 2015.
[4] SIDDALL R, ORTEGA ANCEL A. Wind and water tunnel testing of a morphing aquatic micro air vehicle[J]. Interface Focus, 2017, 7(1): 20160085
[5] PELOQUIN R A, THIBAULT D, DESBIENS A L. Design of a Passive Vertical Takeoff and Landing Aquatic UAV[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 381–388
[6] WEISLER W, STEWART W, ANDERSON M B, et al. Testing and Characterization of a Fixed Wing Cross-Domain Unmanned Vehicle Operating in Aerial and Underwater Environments[J]. IEEE Journal of Oceanic Engineering, 2017: 1–14
[7] MAIA M M, SONI P, DIEZ F J. Demonstration of an Aerial and Submersible Vehicle Capable of Flight and Underwater Navigation with Seamless Air-Water Transition[J]. 2015.
[8] ALZU'BI H, MANSOUR I, RAWASHDEH O. Loon Copter: Implementation of a hybrid unmanned aquatic–aerial quadcopter with active buoyancy control[J]. Journal of Field Robotics, 2018, 35(5): 764–778
[9] MA Z, FENG J, YANG J. Research on vertical air-water trans-media control of Hybrid Unmanned Aerial Underwater Vehicles based on adaptive sliding mode dynamical surface control[J]. International Journal of Advanced Robotic Systems, 2018, 15(2): 1–10
[10] 廖保全, 冯金富, 齐铎, 等. 基于FLUENT的新型跨介质航行器气动水动特性研究[J]. 数值计算与计算机应用, 2016, 37(4): 265–272
[11] 廖保全, 冯金富, 齐铎, 等. 一种可变形跨介质航行器气动/水动特性分析[J]. 飞行力学, 2016, 34(3): 44–47+57
[12] 冯欢欢, 刘勇, 王琦, 等. 基于LBM-LES方法两栖水翼航行器水动特性分析[J]. 航空工程进展, 2019, 10(1): 102–108
[13] 鲍杨春.跨介质航行器流体动力外形组合仿生设计与气动特性分析[D].吉林:吉林大学, 2019.
BAO Yang-chun. Biomimetic design and Aerodynamic Characteristics analysis of cross-medium vehicle's Hydrodynamic Profile Combination [D]. Jilin: Jilin University, 2019.
[14] 王福军.计算流体动力学分析: CFD软件原理与应用[M].北京: 清华大学出版社, 2004: 7−13.
[15] 胡坤.计算流体力学基础及应用[M].北京: 机械工业出版社, 2018: 105−107.
[16] 严卫生.鱼雷航行力学[M].西安: 西北工业大学出版社, 2005.