海洋平台导管结构常受到洋流、台风等激励而振动,低频振动控制是评估海洋平台安全性的重要指标。针对海洋平台导管受低频振动控制问题,设计了基于布拉格机理的一维声子晶体导管。利用有限元法得到周期结构的带隙特性,然后分析一维周期声子晶体导管结构的纵向能带特性,在一维周期导管结构能带结构的基础上,进一步研究了周期结构单元的密度、弹性模量等材料参数和晶格常数、组分比、厚度等结构参数对一维周期导管结构的纵向振动带隙特性影响规律。结果表明:晶格常数和材料的组分比对带隙的起止频率、带隙宽度和中心频率影响明显;导管壁厚、导管密度和弹性模量对带隙的起止频率、带隙宽度和中心频率影响很小。
The offshore platform conduit structure is often vibrated by excitations such as ocean currents and typhoons. The low-frequency vibration control is an important index to evaluate the safety of offshore platforms. A one-dimensional phonon crystal conduit based on Bragg mechanism is designed for the low frequency vibration control of offshore platform conduits. The bandgap of the periodic structure is obtained with finite element method and the longitudinal energy band characteristics of the one-dimensional periodic phononic crystal tube structure are first analyzed. Based on the one-dimensional periodic tube structure energy band structure, the density and elastic modulus of the periodic structure unit are further studied. The influence of such material parameters and lattice constants, composition ratio, thickness and other structural parameters on the longitudinal vibration band gap characteristics of the one-dimensional periodic duct structure. The results show that the lattice constant and the composition ratio of the material have a significant effect on the band gap start-stop frequency, band gap width and center frequency; the tube wall thickness, tube density and elastic modulus have an effect on the band gap start-stop frequency, band gap width and center Little effect on frequency.
2021,43(10): 79-83 收稿日期:2020-10-22
DOI:10.3404/j.issn.1672-7649.2021.10.017
分类号:TB34
基金项目:江苏自然科学基金资助项目(BK20191462)
作者简介:肖英龙(1988-),男,工程师,研究方向:船舶振动噪声控制
参考文献:
[1] 温激鸿, 王刚, 郁殿龙, 等. 声子晶体振动带隙及减振特性研究[J]. 中国科学:技术科学, 2007, 37(9): 1126
[2] YANG S, PAGE J H, LIU Z, et al. Focusing of sound in a 3D phononic crystal[J]. Physical Review Letters, 2004, 93(2): 024301
[3] 梁孝东, 缪林昌, 尤佺, 等. 局域共振二维声子晶体的低频带隙特性研究[J]. 人工晶体学报, 2019(7)
[4] MARTINEZ-SALA R., SANCHEZ J., SANCHEZ J. V. et al. Sound attenuation by sculpture[J]. Nature, 1995, 378: 241
[5] 张研, 韩林, 蒋林华. 声子晶体的计算方法与带隙特性[M]. 北京: 科学出版社, 2014.
[6] 陈荣, 吴天行. 周期结构空腹梁的动态特性研究[J]. 振动与冲击, 2013(14): 127–131
[7] 徐冰茹, 徐少辉, 王连卫. 一维多孔硅声子晶体的带隙研究[J]. 人工晶体学报, 2012(5): 296–301
[8] LIU Z Y, ZHANG X X. Locally resonant sonic materials[J]. Science, 2000, 289: 1734–1736
[9] 沈礼, 吴九汇, 陈花玲. 声子晶体结构在汽车制动降噪中的理论研究及应用[J]. 应用力学学报, 2010, 27(2): 293–297
[10] MOHAMMAD H. A, KHORASANI S. Optical wave evolution due to interaction with elastic wave in a phoxonic crystal slab waveguide[J]. Applied Physics B, 2017, 123(8): 218
[11] CERJAN C, KOSLOFF D, KOSLOFF R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations[J]. Geophysics, 1985, 50(4): 705–708
[12] 王连坤. 用于声子晶体检测的光外差测量技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2010
[13] 温激鸿, 王刚, 刘耀宗, 等. 基于集中质量法的一维声子晶体弹性波带隙计算[J]. 物理学报, 2004(10): 140–144
[14] 刘江伟, 郁殿龙, 温激鸿, 等. 周期附加质量充液管路减振特性研究[J]. 振动与冲击, 2016, 35(6): 141–145
[15] 郁殿龙, 刘耀宗, 王刚, 等. 一维杆状结构声子晶体扭转振动带隙研究[J]. 振动与冲击, 2006(1): 107–109+172-173