筏架变形是轴系校中过程必须考虑的因素。基于有限元校中方法对筏架和轴系分别建立了有限元模型,分析了考虑筏架对轴系校中的影响规律。结果表明,在轴系自由端,筏架的变形对扰度影响较大,负荷影响较小,而在轴系固定端,则对扰度影响较小,负荷影响较大。从满足轴系校中规范的角度来设计,带有筏架的轴系与动力系统进行连接时,须采用允许一定垂向位移的弹性联轴节,以便轴系校中时对前端能采用自由端处理。
The influence of raft frame deformation on shafting alignment cannot be ignored. Based on the finite element alignment method, the finite element models of rafting frame and shafting were established respectively, and the influence law of rafting frame on shafting alignment was analyzed. The results show that the deformation of raft frame has a great influence on the disturbance of the free end of shafting and a small influence on the load, while it has a small influence on the disturbance of the fixed end of shafting and a large influence on the load. From the point of view of meeting the specification of shafting alignment, an elastic coupling allowing certain vertical displacement must be adopted when the shafting with raft frame is connected with the power system, so that the free end can be used to handle the bow end during shafting alignment.
2021,43(10): 118-121 收稿日期:2020-11-17
DOI:10.3404/j.issn.1672-7649.2021.10.024
分类号:U664.21
作者简介:王娟(1978-),女,硕士,高级工程师,研究方向为轴系后传动
参考文献:
[1] 杨勇. 船舶轴系校中技术研究[D]. 大连: 大连理工大学. 2005.
YANG Yong, The study of shipping shaft system alignment[D]. DaLian: Dalian University of Technology, 2005.
[2] 王琴, 卢善兵. 基于三弯矩法的小型船舶轴系校中研究[J]. 机械工程师, 2019(6): 95–97
WANG Qing, LU Shanbing. Research on centering of small ship shafting based on three-moment method[J]. Mechanical Engineering, 2019(6): 95–97
[3] 刘义军, 刘伟, 俞强, 等. 船舶轴系直线校中有限元计算与试验分析[J]. 中国水运, 2014(9): 170–171
LIU Yijun, LIU Wei, YU Qiang, et al. Finite element calculation and test analysis of ship shafting alignment[J]. China Water Transport, 2014(9): 170–171
[4] 常宁, 刘正林, 魏颖春. 基于有限元法轴段偏中时轴系校中状态的研究[J]. 机械设计与制造, 2011(6): 52–54
CHANG Ning, LIU Zhenglin, WEI Yingchun. Research on shafting alignment as shaft segment is misalignment based on finite element method[J]. Machinary Design and Manufacture, 2011(6): 52–54
[5] HE L, XU W, BU W J. Dynamic analysis and design of air spring mounting system for marine propulsion system[J]. Journal of Sound and Vibration, 2014, 333(20): 4912–4929
[6] DYLEJKO P G, KESSISSOGLOU N J, TSO Y K, et al. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J]. Journal of Sound And Vibration, 2007, 300(1/2): 101–116
[7] 赵兴乾, 帅长庚, 徐伟, 等. 船舶艉部整体隔振系统中轴承载荷增量研究[J]. 工程力学, 2019, 36(6): 311–315
ZHAO Xingqian, SHUAI Changgen, XU Wei, et all. Research on bearings load-increment in integrated vibration isolation system of ship stern[J]. Engineering Mechanics, 2019, 36(6): 311–315
[8] 何江洋, 何琳, 徐伟. 船舶推力轴承集成减振系统的轴系校中影响分析[J]. 海军工程大学学报, 2017, 29(3): 32–36
HE Jiangyang, HE Lin, XU Wei. Impact analysis of shafting alignment of integrated vibration isolation system of thrust bearing in ships[J]. Journal of Naval University of Engineering, 2017, 29(3): 32–36
[9] ZHANG, Y., XU, W., LI, Z. et al Alignment and safety analysis of marine propulsion shafting using intelligent floating raft system[J]. J Mar Sci Technol, 2020
[10] WEI Haijun, TONG Chentao, YIN Feng. Finite-element method of shipping shaft alignment[J]. Journal of Dalian Maritime University, 2003(S1): 61–64
[11] 陈锡恩, 高景. 船舶轴系回旋振动计算及其参数研究[J]. 船海工程, 2001(5): 8–11
CHEN Xien, GAO Jing. Calculation and parameter study of ship shafting cyclotron vibration[J]. Ship and Ocean Engineering, 2001(5): 8–11
[12] 金鼎. 基于有限元法的浮筏隔振系统性能分析及结构优化[D]. 武汉: 华中科技大学. 2019.
JIN Ding. Performance analysis and structure optimization of floating raft system based on finite element method[D]. Wuhan: Huazhong University of Science and Technology. 2019.