简要分析火炮水下防御技术发展现状,开展中大口径舰炮跨介质水下防御毁伤能力、内外弹道兼容匹配和弹道飞行稳定方式等技术研究。结果显示:中大口径舰炮进行跨介质水下防御具有较强的可行性,通过水下爆炸合成毁伤,可以增大对鱼雷的毁伤威力;通过增大弹丸质量、降低初速,可使内外弹道兼容匹配;通过对弹丸外形进行优化设计,可实现跨介质高速稳定入水。
Briefly analyzed the development status of artillery underwater defense technology, and carried out technical research on the damage ability of medium and large caliber naval gun underwater defense, internal and external ballistic compatibility matching, and ballistic flight stabilization methods. The results show that medium and large-calibe naval gun have strong feasibility for trans-medium underwater defense. The combined damage through underwater explosions can increase the damage to the torpedo; By increasing the mass of the projectile and reducing the initial velocity, the internal and external ballistics can be improved. Compatible matching; through the optimized design of the projectile shape, high-speed and stable water penetration across media can be achieved.
2021,43(10): 169-172 收稿日期:2020-11-30
DOI:10.3404/j.issn.1672-7649.2021.10.034
分类号:TJ391
作者简介:魏锦(1989-),男,工程师,主要从事舰炮技术研究
参考文献:
[1] 李源, 杨胜雷. 水面舰艇鱼雷防御武器系统[J]. 指挥控制与仿真, 2017, 39(3)
LI Yuan, YANG Shenglei. Surface ship anti-torpedo weapon system[J]. Command Control and Simulation, 2017, 39(3)
[2] 张宝华, 杜选民. 水面舰艇鱼雷防御系统综述[J]. 船舶工程, 2003(4)
ZHANG Baohua, DU Xuanmin. A review of surface warship torpedo defense system[J]. Ship Engineering, 2003(4)
[3] 陈敬军. 国外水面舰艇鱼雷防御系统纵览[J]. 声学技术, 2013, 32(6)
CHEN Jingjun. Overview of torpedo defense systems for foreign surface ships[J]. Technology Acoustic, 2013, 32(6)
[4] 彭松江, 张强, 李凡营. 关于大口径舰炮技术发展的思考[J]. 舰船科学技术, 2019, 41(10)
PENG Songjiang, ZHANG Qiang, LI Fanying. Thoughts on the development of large-caliber naval gun technology[J]. Ship Science and Technology, 2019, 41(10)
[5] 陈汀峰. 对舰炮发展的思考[J]. 舰船科学技术, 2007: 29
CHEN Tingfeng. Thoughts on the development of naval guns[J]. Ship Science and Technology, 2007: 29
[6] 李佳川.高速射弹入水过程流体动力与弹道特性研究[D].哈尔滨: 哈尔滨工业大学, 2015.
LI Jiachuan. Research on the hydrodynamic and ballistic characteristics of high-speed projectiles entering water[D]. Harbin: Harbin Institute of Technology, 2015.
[7] 牟晴, 赵萧雨, 周维. 超空泡技术在小口径炮弹上的应用[J]. 四川兵工学报, 2010, 31(4): 31–33
MOU Qing, ZHAO Xiaoyu, ZHOU Wei. The application of supercavitation technology on small-caliber artillery shells[J]. Journal of Sichuan Armory Engineering, 2010, 31(4): 31–33
[8] 刘锐, 鲁忠宝, 王明渊. 反鱼雷鱼雷战斗部对来袭鱼雷爆炸毁伤效应仿真[J]. 鱼雷技术, 2012, 20(5): 375–379
LIU Rui, LU Zhongbao, WANG Mingyuan. Simulation of the damage effect of the anti-torpedo torpedo warhead on the attacking torpedo explosion[J]. Torpedo Technology, 2012, 20(5): 375–379
[9] 王泽宇.旋转超空泡射弹流体动力特性研究[D].哈尔滨: 哈尔滨工业大学, 2014.
WANG Zeyu. Research on hydrodynamic characteristics of rotating supercavitating projectile[D]. Harbin: Harbin Institute of Technology, 2014.
[10] 董盛鹏, 王雨时, 李作华, 等. 基于仿真的某中口径舰炮弹丸入水前冲过载[J]. 弹箭与制导学报, 2017, 37(1): 31–38
DONG Shengpeng, WANG Yushi, LI Zuohua, etc. Based on simulation, a medium-caliber naval gun projectile is overloaded before entering the water[J]. Journal of Projectiles, Rockets, Rockets and Guidance, 2017, 37(1): 31–38
[11] 吕志民, 申超, 陈永奎. 超空泡射弹技术探讨[J]. 舰船科学技术, 2007, 29(1): 91–94
LU Zhimin, SHEN Chao, CHEN Yongkui. Discussion on supercavitating projectile technology[J]. Ship Science and Technology, 2007, 29(1): 91–94