水下航行体与水体的相互作用会在自由面形成特定的水动力尾迹。为了研究水动力尾迹的产生机理及其特征,本文采用非定常雷诺平均(Unsteady Reynolds-Averaged Naiver-Stokes, URANS)模型以及VOF(Volume of Fluid)方法对连续分层环境中全尺度Suboff激发的自由面尾迹进行数值仿真研究。首先,研究密度连续分层对自由面尾迹特征的影响。将连续分层环境中Suboff周围的流场结构以及自由面尾迹与单层液体环境中的结果进行了详细的比较。其次,对连续分层环境中不同潜深下自由面尾迹特征进行了研究。结果表明,在潜深为20 m,速度为30 kn时,自由面最大波高达3.35 m。随着潜深的增加,Suboff运动对自由面的扰动减弱,自由面尾迹的特征也变得更加微弱。
The interaction between underwater-vehicle and fluid will generate specific hydrodynamic wakes on the freesurface. In order to study the mechanism and characteristics of the hydrodynamic wake, unsteady Reynolds-Averaged Naiver-Stokes (URANS) model together with VOF (Volume of Fluid) method is adopted to simulate the free surface wake excited by the full-scale Suboff model in the continuously stratified fluid. Firstly, the effect of continuously stratified fluid on the characteristics of free surface wake is investigated. The flow structure and free surface wake in the continuously stratified and homogeneous fluid are compared in detail. Secondly, the wake characteristics under different depths in continuously stratified fluid are studied. When the diving depth is 20 m, the maximum wave height is up to 3.35 m. With the increase of the depth, the perturbation of the free surface caused by the Suboff becomes smaller. Consequently, the free surface wake becomes weaker.
2021,43(11): 20-26 收稿日期:2021-05-21
DOI:10.3404/j.issn.1672-7649.2021.11.004
分类号:U661.3
作者简介:吴建威(1991-),男,工程师,研究方向为船舶水动力学
参考文献:
[1] 段宁远, 陈科, 盛立, 等. 分层流体中潜艇模型螺旋桨作用对内波特性影响实验研究[J]. 水动力学研究与进展, 2018, 33(5): 78–86
DUAN Ningyuan, CHEN Ke, SHENG Li, et al. Experimental investigation of propeller effect from a submarine model on internal waves in a stratified fluid[J]. Chinese Journal of Hydrodynamics, 2018, 33(5): 78–86
[2] 罗恒, 陈科, 尤云祥, 等. 运动潜体尾迹及其与随机海面相互作用的数值模拟[J]. 上海交通大学学报, 2007, 41(9): 1435–1440
LUO Heng, CHEN Ke, YOU Yunxiang, et al. The numerical simulation of interaction between free-surface wake generated by a moving submerged body and stochastic ocean waves[J]. Journal of Shanghaijiaotong University, 2007, 41(9): 1435–1440
[3] 周根水, 洪方文, 姚志崇. 分层流体中圆球激发尾流效应内波数值模拟[C]//第三十届全国水动力学研讨会.
ZHOU Genshui, HONG Fangwen, YAO Zhichong. Numerical simulation of the wake-generated internal waves by a moving sphere in stratified fluids[C]//The 30th Conference of Hydrodynamics.
[4] 梁善勇, 王江安, 韦文涛, 等. 水下航行体尾迹激光雷达探测系统的研制[J]. 华中科技大学学报(自然科学版), 2011(9): 30–33
LIANG Shanyong, WANG Jiangan, WEI Wentao, et al. Development of lidar detection system for underwater vehicle wakes[J]. Journal of Huazhong University of Science and technology (Natural Science Edition), 2011(9): 30–33
[5] Hudimac. Ship waves in a stratified ocean[J]. Journal of Fluid Mechanics, 1961: 29–243
[6] CRAPPER G. D. Ship waves in a stratified ocean[J]. Journal of Fluid Mechanics, 1967, 29: 667
[7] KELLER J. B., MUNK W. H. Internal wave wake of a body moving in a stratified fluid[J]. Physics of Fluids, 1970, 13: 1452–1461
[8] SHARIATI S. K., MOUSAVIZADEGAN S. H. The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface[J]. Applied Ocean Research, 2017, 67: 31–43
[9] CHASE N., CARRICA P. M. Submarine propeller computations and application to self-propulsion of DARPA suboff[J]. Ocean Engineering, 2013, 60: 68–80
[10] FUREBY C., ANDERSON B., CLARKE D., et al. Experimental and numerical study of a generic conventional submarine at 10° yaw[J]. Ocean Engineering, 2016, 116: 1–20
[11] 赵先奇, 尤云祥, 陈科, 等. 分层流体中细长体生成内波的试验研究[J]. 上海交通大学学报, 2009(8): 119–122
ZHAO Xianqi, YOU Yunxiang, CHEN Ke, et al. Experimental study on the generation of internal waves by a slender body in stratified fluid[J]. Journal of Shanghaijiaotong University, 2009(8): 119–122
[12] 魏岗, 吴宁, 徐小辉, 等. 线性密度分层流体中半球体运动生成内波的实验研究[J]. 物理学报, 2011(4): 359–365
WEI Gang, WU Ning, XU Xiaohui, et al. Experiments on the generation of internal waves by a hemispheroid in a linearly stratified fluid[J]. Acta Phys. Sin., 2011(4): 359–365
[13] ROTTMAN J. W., BROUTMAN D., SPEDDING G., et al. Internal wave generation by a horizontally moving sphere at low Froude number[C]//25th Symposium on Naval Hydrodynamics. Canada, 2004.
[14] 姚志崇, 赵峰, 梁川, 等. 分层流体中拖曳球体尾流及辐射内波试验研究[J]. 船舶力学, 2014(11): 1275–1283
YAO Zhichong, ZHAO Feng, LIANG Chuan, et al. Experimental research on wake flow and internal waves generated by towing sphere in stratified fluids[J]. Journal of Ship Mechanics, 2014(11): 1275–1283
[15] 孟庆杰, 彭亮, 邓海华. 基于RANS的Suboff尾迹特征数值预报[J]. 舰船科学技术, 2018, 40(10): 6-11.
MENG Qingjie, PENG Liang, DENG Haihua. Rans simulations of hydrodynamic wakes of the darpa Suboff model[J]. Ship Science and Technology, 2018, 40(10): 6-11.
[16] CHANG Y., ZHAO F., ZHANG J., et al. Numerical simulation of internal waves excited by a submarine moving in the two-layer stratified fluid[J]. Journal of Hydrodynamics, 2006, 18(S): 330–336
[17] 丁勇, 段菲, 韩盼盼, 等. 两层流中潜体运动与诱发内波特征关系研究[J]. 船舶力学, 2016(5): 523–529
DING Yong, DUAN Fei, HAN Panpan, et al. Research on the relationship between moving patterns of submerged body and the features of induced internal waves in two layer fluid[J]. Journal of Ship Mechanics, 2016(5): 523–529
[18] 段菲. 分层流中潜体运动对内波及表层流场影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
DUAN Fei. Numerical Study of Effects on Internal Waves and Free Surface Flow Field Resulting from Submerged Body Moving in the Pycnocline [D]. Habin: Harbin Engineering University, 2015.