本文主要研究作业型自主遥控水下机器人(ARV)的姿态控制问题。在ARV进行悬停作业时,机械臂运动对载体的耦合作用和环境不确定性等因素将影响作业过程的载体姿态,导致机械臂作业精度降低。为此,本文提出一种基于隐式离散化的超螺旋算法用于载体的姿态稳定控制。隐式离散化的引入有效抑制超螺旋算法离散化引发的抖振,对采样周期和过高的控制增益不敏感。采用多目标优化算法用于控制参数优化,排除了参数选择对控制性能的影响,确保了对比仿真实验的公平性。最后的对比仿真实验验证了所提出算法的有效性和优越性。
This paper investigates the attitude control problem of operational Autonomous and Remotely-operated Vehicle (ARV). When the ARV performs the floating manipulation, the dynamic coupling effect of manipulator movement on the vehicle and the environmental uncertainty will affect the attitude control of the vehicle, thereby reducing the accuracy of the manipulator operation. Thus, this paper proposed the super-twisting algorithm based on the implicit discretization method for the attitude stability control of the vehicle. The introduced implicit discretization method can effectively suppress the chattering due to discretization of the super-twisting algorithm, and it is insensitive to the sampling time and oversized control gains. Then, the multi-objective optimization algorithm is used to optimize the control parameters, which eliminates the influence of parameter selection on the control performance and ensures a fair comparative simulation experiment. Finally, the effectiveness and superiority of the proposed control scheme are verified by the comparative simulation experiment.
2021,43(11): 83-89 收稿日期:2021-02-23
DOI:10.3404/j.issn.1672-7649.2021.11.015
分类号:TP242
基金项目:国家重点研发计划(2016YFC0300800);辽宁省兴辽英才计划项目(XLYC1807234)
作者简介:丁宁宁(1994-),男,硕士研究生,主要从事水下机器人运动控制相关领域研究
参考文献:
[1] 唐元贵, 王健, 陆洋, 等. “海斗号”全海深自主遥控水下机器人参数化设计方法与试验研究[J]. 机器人, 2019, 41(6): 697–705
[2] 陆洋, 唐元贵, 王健, 等. 全海深ARV浮力配平计算方法[J]. 机器人, 2021, 43(1): 74–80
[3] YAN J, GAO J, YANG X, et al. Tracking control of a remotely operated underwater vehicle with time delay and actuator saturation[J]. Ocean Engineering, 2019, 184, 299–310.
[4] YAN Z, GONG P, ZHANG W, et al. Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances[J]. Ocean Engineering, 217, 78-84.
[5] SHEN C, SHI Y, BUCKHAM B. Trajectory Tracking Control of an Autonomous Underwater Vehicle Using Lyapunov-Based Model Predictive Control[J]. IEEE Trans. Ind. Electron. , 65, 5796–5805.
[6] KHODAYARI M. H, BALOCHIAN S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller[J]. J. Mar. Sci. Technol., 2015(20): 559–578.
[7] XIANG X, YU C, LAPIERRE L, et al. Survey on Fuzzy-Logic-Based Guidance and Control of Marine Surface Vehicles and Underwater Vehicles[J]. Int. J. Fuzzy Syst, 2018(20): 572–586.
[8] ZHANG J, XIANG X, ZHANG Q, et al. Neural network-based adaptive trajectory tracking control of underactuated AUVs with unknown asymmetrical actuator saturation and unknown dynamics[J]. Ocean Engineering., 2020(218): 108-193.
[9] ELHAKI O, SHOJAEI K: A robust neural network approximation-based prescribed performance output-feedback controller for autonomous underwater vehicles with actuators saturation[J]. Eng. Appl. Artif. Intell, 2019(88): 103−382.
[10] RANGEL M. A. G, MANZANILLA A, A. E. SUAREZ Z, et al. Adaptive Non-singular Terminal Sliding Mode Control for an Unmanned Underwater Vehicle: Real-time Experiments[J]. Int. J. Control Autom. Syst, 2020(18).
[11] BORLAUG I. -L. G, PETTERSEN K. Y, GRAVDAHL J. T. Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results[J]. Ocean Engineering, 2020, 222: 108−480.
[12] PATRE B, LONDHE P, WAGHMARE L, et al. Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle[J]. Ocean Engineering, 2019, 159: 372–387, 2018.
[13] LEE S. -D, HONG PHUC B. XU D, X, et al. Roll suppression of marine vessels using adaptive super-twisting sliding mode control synthesis[J]. Ocean Engineering, 2019(195 ): 106−724.
[14] GUERRERO J, TORRES J, CREUZE V, et al. Trajectory tracking for autonomous underwater vehicle: An adaptive approach[J]. Ocean Engineering, 2019(172): 511–522.
[15] KOCH S, REICHHARTINGER M, HORN M. On the Discretization of the Super-Twisting Algorithm[C]. 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. 2019: 5989–5994.
[16] BROGLIATO B, POLYAKOV A. Digital implementation of sliding-mode control via the implicit method: A tutorial[J]. Int. J. Robust Nonlinear Control, 2020(9): 51−21, Sep. 2020.
[17] HUBER O, ACARY V, BROGLIATO B. Lyapunov Stability and Performance Analysis of the Implicit Discrete Sliding Mode Control[J]. IEEE Trans. Autom. Control, 2018(61).
[18] HUBER O, ACARY V, BROGLIATO B, et al. Implicit discrete-time twisting controller without numerical chattering: Analysis and experimental results[J]. Control Eng. Pract., 2016(46): 129–141.
[19] BROGLIATO B, POLYAKOV A, EFIMOV D. The Implicit Discretization of the Supertwisting Sliding-Mode Control Algorithm[J]. IEEE Trans. Autom. Control, 65(8): 8.
[20] KOCH S, REICHHARTINGER M. Discrete-time equivalents of the super-twisting algorithm[J]. Automatica, 2019(107): 190–199.
[21] 刘金夫, 王亚兴, 唐元贵, 等. 全海深ARV动力学建模及简化研究[J]. 海洋技术学报, 2019, 38(2): 21–29
[22] SHTESSEL Y. B, MORENO J. A, PLESTAN F, et al. Super-twisting adaptive sliding mode control: A Lyapunov design[C]// 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, Dec. 2010: 5109–5113.
[23] FACCHINEI F, PANG J. -S. Finite-dimensional variational inequalities and complementarity problems. New York: Springer, 2003.
[24] CASTILLO I, FRIDMAN L, J. MORENO A. “Super-twisting algorithm in presence of time and state dependent perturbations[J]. Int. J. Control, 91(11):11.