为了解决日益严重的能源、污染排放问题,在航海船舶中提出混合动力船舶的动力提供方法,其本质是对船舶电机的控制,包括发电机和蓄电池之间的转换。本文将对混合动力推进系统进行分析介绍,通过滑模控制策略方法控制两者之间的转换稳定,提高蓄电池的稳定接入运行,并且通过Matlab/Simulink进行仿真分析,与PI控制进行对比。仿真分析结果表明,采用的滑模控制策略能够很好的控制混合动力推进系统的转变和控制,以及适应负荷的转变。混合动力推进系统可以较好满足船舶航行要求。
In order to solve the increasingly serious problems of energy and pollution emissions, the power supply method of hybrid ships is proposed in nautical ships. Its essence is to control the ship’s motors, including the conversion between generators and batteries. This article will analyze and introduce the hybrid power system, and control the conversion stability between the two through the sliding mode control method to improve the stable connection operation of the battery, and perform simulation analysis through Matlab / Simulink, and compared with PI control. The results show that the adopted control strategy can better control the transition and control of the hybrid power system, as well as the adaptation of the load.
2021,43(11): 114-118 收稿日期:2020-06-16
DOI:10.3404/j.issn.1672-7649.2021.11.021
分类号:U674.925
作者简介:高键(1964-),女,副教授,研究方向为电气自动化
参考文献:
[1] 陈勇军. 一种新型船用混合动力系统设计[J]. 装备制造技术, 2018(7): 47–50
CHEN Yongjun. Design of a new type of marine hybrid power system[J]. Equipment Manufacturing Technology, 2018(7): 47–50
[2] 刘运新, 马川. 一种新型船用燃料电池混合动力系统的建模[J]. 中国航海, 2016, 39(1): 13–16+21
LIU Yunxin, MA Chuan. Modeling of a new type of marine fuel cell hybrid power system[J]. Navigation of China, 2016, 39(1): 13–16+21
[3] 蔡英凤, 窦磊, 陈龙, 等. 基于补偿滑模控制的混合动力汽车协调控制[J]. 汽车工程, 2020, 42(4): 431–438
CAI Yingfeng, DOU Lei, CHEN Long, et al. Hybrid electric vehicle coordinated control based on compensating sliding mode control[J]. Automotive Engineering, 2020, 42(4): 431–438
[4] 史志赛, 刘亮清, 赛军杰, 等. 柴电混合动力改造轴系复装方案[J]. 船舶工程, 2020, 42(1): 63–67
SHI Zhisai, LIU Liangqing, SAI Junjie, et al. Diesel-electric hybrid retrofit shafting reinstallation plan[J]. Ship Engineering, 2020, 42(1): 63–67
[5] 张泽辉, 陈辉, 高海波, 等. 基于实时小波变换的燃料电池混合动力船舶能量管理策略[J]. 中国舰船研究, 2020, 15(02): 127–136
ZHANG Zehui, CHEN Hui, GAO Haibo, et al. Energy management strategy for fuel cell hybrid ships based on real-time wavelet transform[J]. China Ship Research, 2020, 15(02): 127–136
[6] 陈剑龙, 刘俊峰, 王振刚, 等. 基于DRL的无人船混合动力系统能量管理策略研究[J]. 中国测试, 2020, 46(02): 9–15
CHEN Jianlong, LIU Junfeng, WANG Zhengang, et al. Research on energy management strategy of unmanned ship hybrid power system based on DRL[J]. China Measurement and Test, 2020, 46(02): 9–15
[7] YANG Rui, YUAN Yupeng, YING Rushun, et al. A novel energy management strategy for a ship’s hybrid solar energy generation system using a particle swarm optimization algorithm[J]. Energies, 2020, 13(6).
[8] 韩北川. 基于模糊控制的混合动力船舶能量管理策略研究[J]. 机电工程技术, 2019, 48(7): 84–87
HAN Beichuan. Research on energy management strategy of hybrid power ship based on fuzzy control[J]. Mechanical and Electrical Engineering Technology, 2019, 48(7): 84–87
[9] 王永鼎, 程湘裕. 基于BDS的混合动力船舶节能研究[J]. 全球定位系统, 2020, 45(2): 112–118
WANG Yongding, CHENG Xiangyu. Research on energy saving of hybrid power ships based on BDS[J]. Global Positioning System, 2020, 45(2): 112–118
[10] 李书舟, 容慧, 彭勇. 基于瞬时优化的船舶机电电机混合动力控制系统研究[J]. 舰船科学技术, 2018, 40(12): 91–93
LI Shuzhou, RONG Hui, PENG Yong. Research on ship electromechanical motor hybrid power control system based on instantaneous optimization[J]. Ship Science and Technology, 2018, 40(12): 91–93
[11] 高以康, 张新塘, 徐达. 内河船舶液化天然气发动机-蓄电池混合动力系统性能仿真[J]. 内燃机工程, 2020, 41(1): 42–48+56
GAO Yikang, ZHANG Xintang, XU Da. Performance simulation of inland watercraft LNG engine-battery hybrid power system[J]. Internal Combustion Engine Engineering, 2020, 41(1): 42–48+56
[12] 赵福海, 王锡淮. 燃料电池锂电池混合动力船舶建模与仿真[J]. 船电技术, 2019, 39(10): 33–36+41
ZHAO Fuhai, WANG Xihuai. Modeling and simulation of fuel cell lithium battery hybrid power ship[J]. Ship Electric Technology, 2019, 39(10): 33–36+41
[13] CHEN Hui, ZHANG Zehui, GUAN Cong, et al. Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship[J]. Energy, 2020: 197