辨识建模是船舶运动建模的主要方法之一。当前的船舶运动辨识建模以参数辨识为主要形式,本文通过文献回顾,归纳总结了参数可辨识性、辨识模型、辨识算法和辨识数据等4个方面的研究成果。分析指出当前存在辨识数据局限性、理论支撑不足和工程应用欠缺等问题,并就下一步在数据处理、理论完备性、非参数辨识和在线辨识方面的研究前景进行了展望。
Identification modeling is one of the main methods of ship motion modeling. Parameter identification is the main form of current ship motion identification modeling. This paper summarizes the research results of parameter identifiability, identification model, identification algorithm and identification data through literature review. Further analysis points out that the identification data limitations, lack of theoretical support and engineering applications and other problems, and the future research prospects in data processing, theoretical completeness, non-parameter identification and online identification.
2021,43(12): 21-24 收稿日期:2021-08-23
DOI:10.3404/j.issn.1672-7649.2021.12.004
分类号:U661
基金项目:国家自然科学基金资助项目(51679024,51909018);大连海事大学2021年研究生教育教学改革项目(YJG2021601)
作者简介:赵百岗(1987-),男,博士研究生,主要研究方向为船舶运动辨识建模,船舶运动控制
参考文献:
[1] Maritime Safety Committee. Standards for ship manoeuvrability [S]. MSC. 137(76), London: International Maritime Organization at MSC 76th session, 2002: 37-42.
[2] 张秀凤, 王晓雪, 孟耀, 等. 船舶运动建模与仿真研究进展及未来发展趋势[J]. 大连海事大学学报, 2021, 47(1): 1–8
[3] 贾欣乐, 杨盐生. 船舶运动数学模型[M]. 大连: 大连海事大学出版社, 1999.
[4] 梅斌. 基于自航试验的船舶操纵运动灰箱辨识建模[D]. 大连: 大连海事大学, 2020.
[5] LJUNG L. Perspectives on system identification[J]. Annual Reviews in Control, 2009, 34(1): 1–12
[6] 野本谦作, 田口贤士, 本田启之辅, 等. 船の操纵性に就いて[J]. 造船协会论文集, 1956, 1956(99): 75–82
[7] ABKOWITZ M. Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification[J]. Trans. Soc. Naval Arch. Mar. Eng, 1980, 88(1): 283–318
[8] Norrbin N. Theory and observation on the use of a mathematical model for ship manoeuvring in deep and confined waters[J]. Publications of the Swedish state Shipbuilding Experimental Tank, 1971: 68
[9] K oLLSTR oM C G. Identification and adaptive control applied to ship steering[D] . Lund, Sweden: Lund Institute of Technology, 1982.
[10] ÅSTR M K J, K LLSTR M C. Identification on Ship Steering Dynamics [J]. Automatica 1976, 12: 9-22.
[11] 罗伟林, 李铁山, 邹早建. 船舶操纵运动建模中的参数可辨识性问题[J]. 大连: 大连海事大学学报, 2009, 35(4): 1–3
[12] LUO W L. Parameter identifiability of ship manoeuvring modeling using system identification[J]. Math Probl Eng, 2016: 2016
[13] 秦余钢, 马勇, 张亮, 等. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897–903
[14] 谢朔, 陈德山, 初秀民, 等. 改进多新息卡尔曼滤波法辨识船舶响应模型[J]. 哈尔滨工程大学学报, 2018, 39(2): 282–289
[15] XIE S, CHU X M, LIU C G, et al. Parameter identification of ship motion model based on multi-innovation methods[J]. J Mar Sci Tech-Japan, 2020, 25(1): 162–184
[16] LIU C G, ZHENG H R, NEGENBORN R, et al. Adaptive predictive path following control based on least squares support vector machines for underactuated autonomous vessels[J]. Asian J Control, 2021, 23(1): 432–448
[17] JIANG Y, WANG X G, ZOU Z J, et al. Identification of coupled response models for ship steering and roll motion using support vector machines[J]. Appl Ocean Res, 2021: 110
[18] XU H T, SOARES C G. Vector field path following for surface marine vessel and parameter identification based on LS-SVM[J]. Ocean Eng, 2016, 113: 151–161
[19] ZHU M, HAHN A, WEN Y Q. Identification-based controller design using cloud model for course-keeping of ships in waves[J]. Eng Appl Artif Intel, 2018, 75: 22–35
[20] 孙功武, 谢基榕, 王俊轩. 基于动态遗忘因子递推最小二乘算法的船舶航向模型辨识[J]. 计算机应用, 2018, 38(3): 900–4
[21] 谢朔, 初秀民, 柳晨光, 等. 基于多新息最小二乘法的船舶操纵响应模型参数辨识[J]. 中国航海, 2017, 40(1): 73–8
[22] LUO W L, LI X Y. Measures to diminish the parameter drift in the modeling of ship manoeuvring using system identification[J]. Appl Ocean Res, 2017, 67: 9–20
[23] WANG Z H, SOARES C G, ZOU Z J. Optimal design of excitation signal for identification of nonlinear ship manoeuvring model[J]. Ocean Eng, 2020: 196
[24] ZHENG J, LI Y, MENG F. Online identification method of nonlinear ship motion mathematical models from free-running tests[J]. Proc Ieee Int Symp, 2019: 1930–1936
[25] SUN X J, WANG G F, FAN Y S. Model identification and trajectory tracking control for vector propulsion unmanned surface vehicles [J]. Electronics-Switz, 2020, 9(1).
[26] GUO H P, ZOU Z J. System-based investigation on 4-DOF ship maneuvering with hydrodynamic derivatives determined by RANS simulation of captive model tests[J]. Appl Ocean Res, 2017, 68: 11–25
[27] XU H T, HASSANI V, SOARES C G. Comparing generic and vectorial nonlinear manoeuvring models and parameter estimation using optimal truncated least square support vector machine[J]. Appl Ocean Res, 2020: 97
[28] 曹伟男. 基于EKF的船舶艏向模型辨识与L_2闭环成形滤波控制 [D]. 大连: 大连海事大学, 2020.
[29] 秦操. 基于无迹卡尔曼滤波的船舶运动数学模型辨识[J]. 舰船科学技术, 2021, 43(1): 89–94
[30] XU H, HINOSTROZA M A, HASSANI V, et al. Real-time parameter estimation of a nonlinear vessel steering model using a support vector machine [J]. J Offshore Mech Arct, 2019, 141(6).
[31] XUE Y F, LIU Y J, JI C, et al. System identification of ship dynamic model based on Gaussian process regression with input noise[J]. Ocean Eng., 2020: 216
[32] ZHU M, HAHN A, WEN Y Q, et al. Optimized support vector regression algorithm-based modeling of ship dynamics[J]. Appl Ocean Res., 2019: 90
[33] 王雪刚. 基于支持向量机的四自由度船舶操纵运动建模研究[D]. 上海: 上海交通大学, 2014.
[34] MOREIRA L, SOARES C G. Dynamic model of manoeuvrability using Recursive Neural Networks[J]. Ocean Eng., 2003, 30(13): 1669–97
[35] ZHAO B G, ZHANG X K. An improved nonlinear innovation-based parameter identification algorithm for ship models[J]. J. Navigation, 2021, 74(3): 549–557
[36] ZHANG G Q, ZHANG X K, PANG H S. Multi-innovation auto-constructed least squares identification for 4 DOF ship manoeuvring modelling with full-scale trial data[J]. Isa T, 2015, 58: 186–195
[37] HOU X R, ZOU Z J. Parameter identification of nonlinear roll motion equation for floating structures in irregular waves[J]. Appl Ocean Res., 2016, 55: 66–75
[38] XU H T, HINOSTROZA M A, WANG Z H, et al. Experimental investigation of shallow water effect on vessel steering model using system identification method[J]. Ocean Eng., 2020, 199: 106940
[39] BAI W W, REN J S, LI T S. Modified genetic optimization-based locally weighted learning identification modeling of ship maneuvering with full scale trial[J]. Future Gener Comp Sy, 2019, 93: 1036–1045
[40] XU P F, CHENG C, CHENG H X, et al. Identification-based 3 DOF model of unmanned surface vehicle using support vector machines enhanced by cuckoo search algorithm[J]. Ocean Eng., 2020: 197